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Abstract

In Data Envelopment Analysis (DEA), one way of calculating e [ciehcy is to use parameter weights
common to all decision-making units (DMUs), since it is reasonable for similar DMUs to place similar
weights on inputs and outputs. At the same time, in many situations, the total amount of input or
output available to a set of DMUs is fixed. In this paper, we have formulated DEA models to calculate
the best strategy for improving the e Lciehcy of an ine [cieht DMU when the parameters of all DMUs
are weighted with a common set of weights, and there is a constant sum of inputs/outputs constraint.
Theoretical results have been illustrated with the help of a numerical example.

Keywords: DEA, e Lciehcy, linear programming, common weights, constant sum of inputs, constant
sum of outputs

1 Introduction

Data Envelopment Analysis (DEA) is a widely applied non-parametric mathematical programming
technique to calculate the relative e Lciehcy of firms/organizations or Decision Making Units (DMUSs)
operating in a similar environment and utilizing multiple inputs to produce multiple outputs. Based
on Farrell’s (1957) work on productive e [ciehcy, DEA was first introduced by Charnes, Cooper, and
Rhodes (1978). E [ciehcy obtained using DEA, in its simplest form, is the comparison of the weighted
output to weighted input ratio of the observing DMU with that of the best practice in the group.
DEA has an advantage over other methods since the inputs/output weights are determined by the
DEA model itself, and thus the decision maker does not face the problem of determining the weights
beforehand. Measurement of e [ciehcy is important to shareholders, managers, and investors for any
future course of action. DEA has been extensively applied to a wide spectrum of practical problems.
Examples include financial institutions (Sherman and Ladino 1995), bank failure prediction (Barr et.
al. 1994), electric utilities evaluation (Goto and Tsutsui 1998), textile industry performance (Chandra
et. al. 1998), sports (Singh and Adhikari, 2015; Singh 2011; Ruiz et al. 2013), portfolio evaluation
(Murthi et. al. 1997). DEA analysis makes allowance for DMUs which are under constant returns to
scale (CRS) using the Charnes-Cooper-Rhodes (CCR) models (1978) as well as for variable returns to



scale (VRS) models such as the Banker-Charnes-Cooper (BCC) models (Banker et al. 1984).

A DMU can improve its e [Lciehcy by reducing its input or increasing its output or doing both. How-
ever, when a DMU attempts to increase output, it may turn out that there is only a limited amount
of output that can be produced in the system by all DMUs, such as the Olympic Games where only
a limited number of medals are available to the competing teams (Lins et. al. 2003), or competition
for market share (Hu and Fang 2010). This limitation on output is called Constant Sum of Outputs
(CSOO0). Yang et. al. (2011) established models for improving the e [ciehcy of a DMU under CSOO,
but these models all operated under the assumption that the various inputs and outputs of a DMU were
freely substitutable, and that the weights of one DMU were independent of the weights for other DMUEs.

Similarly, if the amount of input in the system is constant, a DMU can only reduce its input if the
input of another DMU s increased. Examples of constant sum of input (CSOI) problems include the
distribution of a fixed cost (Cook and Kress 1999) or the allocation of o [ce bpace (Gomes et al. 2008).
Almost all approaches to the CSOI problem such as those developed by Beasley (2003) or later methods
like the ellipsoidal frontier model (Milioni et al. 2011), treat the CSOI as a fixed cost problem. Lotfi
et al. (2013) deals with resource allocation under common weights, but it also treats the problem as
a fixed cost allocation. None of them consider the problem of a single DMU attempting to improve
its e Lciehcy, instead looking at all DMUs simultaneously. Furthermore, no paper exists that combines
CSOI and CSOO constraints in a single problem.

The survey of existing works in CSOO and CSOI indicate that there are few papers that take into
account the Common Weights restriction, and none of these addresses both CSOO and CSOI prob-
lems simultaneously. Common Weights (CW) is a very common form of weight restriction in DEA. If
the DMUs are operating in a similar environment, they can be expected to have the same parameter
weights (Lotfi et al. 2013). The CW approach is also used when classic DEA models do not give
us accurate information as to the real weights of the input and output parameters, or to di[erentiate
between e [cieht DMUs (Liu and Peng 2008). Several approaches exist for solving CW e Lciehcy (Roll
and Golany 1993, Cook and Zhu 2007). In this paper, we have addressed the problem of e [ciehcy
improvement under CSOI and CSOO constraints when a set of common weights is applied to input
and output parameters of all DMUs. This is useful in real-life situations where the overall e [ciehcy
of the system is more important than individual DMU'’s e [ciehcy (Beasley 2003), and there are limits
to total productivity and/or a fixed input quantity. It is also useful in situations where all DMUs are
expected to place similar weights on the various parameters.

This paper is organized as follows. In section 2, DEA models and theoretical results have been de-
veloped. Numerical illustration of the theoretical results developed in this paper is given in section 3.
Conclusion and future direction for research have been presented in section 4.

2 Model formulation and theoretical results

The following notations have been used throughout this paper. Other notations used in certain sections
will be defined at appropriate places.

n : The number of DMUs.
m : The number of inputs.
s : The number of outputs.
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: Observed amount of j™ input for the i'" DMU (i=1,...,n;j =1,...,m).

. Observed amount of r'" output for the i DMU(i=1,...,n;r=1,...,s).

. E [ciehcy of the k™ DMU under common weights (CW).

. The weight assigned to the rt" output(r =1,...,s).

. The weight assigned to the j input(j = 1,...,m).

. Value representing the variable part of variable returns to scale DEA models.
. Virtual gap between the weighted inputs of the it"(i=1,...,n) DMU and

best-practices frontier.

. Virtual gap between the weighted outputs of the it"(i = 1,...,n) DMU and

best-practices frontier.

. The output increase in the r'"(r = 1,...,s) output of the k' DMU.

. The output reduction in the r'"(r =1, ...,s) output of the it"(i=1,...,n;i 8 k) DMU.
: The input decrease in the j*"(j = 1,...,m) input of the k" DMU.

. The input increase in the j™'(j = 1,...,m) input of the i*"(i=1,...,n;i 8 k) DMU.

. An infinitesimally small positive value.

Several methods exist for ranking DMUs’ e [ciehcy under common weights (Roll and Golany 1993,
Cook and Zhu 2007, Liu and Peng 2008, Lotfi et al. 2013). Under the CW limitation, since the weights
are same across all DMUSs, the objective is to select weights such that the overall e [ciehcy of all DMUs
is maximized. Later papers use a Goal Programming (Tamiz et al. 1998) approach to convert the



model to achieve this minimization is shown below.
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Now, define the values of AP and Al (i & k) as

1
AP =A% Ul (i=1,...,miEk) (2.5)
r=1
1
A=A vs; (i=1,...,niEKk) (2.6)
j=1

Since (M2) has been solved, and it is equivalent to (M1), all the constraints of (M1) are fulfilled by
its solution. Thus,

1
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The above equation can be rewritten using egns. (2.1)-(2.6) as
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The equations (2.7)-(2.12) are identical to the constraints of model (M 3), and they all hold good as they
are equivalent to the constraints of (M 1). Thus the values of uE’vj'?'tir, sij, AP, Al as defined by (M2)
and eqgns. (2.1)-(2.6) represent a feasible solution to model (M 3). Hence the proof. ]

Let Ebe the overall e Lciehcy of all DMUs as calculated by (M2), and E be overall e [ciehcy o[ ]
all DMUs using the model (M 3).

Theorem 2. E = Eor all solutions of (M?3).

Proof.The values of uF,'vjE,]tir, Sij, AP, Al as defined in Theorem 1, represent a feasible solution to






By the constraints of (M4),

AP, A =0,

which means

] 1 T 1 I 1 | 1
UYir —  ViXij + AP +A - g — v =0,i=1,...,niBK,
r=1 ji=1 r=1 j=1

can be rewritten as

T 1 i 1 I 11 1
ViXij — UrVir + Qir + Ykij =0,i=1,...,n;i Bk (213)
ji=1 r=1 r=1 ji=1

Also by the constraints of (M4), since

| o T 1 ] 1 [ | | I 1
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the objective function

1
Min (AP + A,
i=1,iEk

can be rewritten as
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Thus, the new objective function is
1 —1
r U | 1 ¥ 1

Min VjXkj — UrYkr - (2.14)

i=1  j=1 r=1

Incorporating Egns. (2.13) and (2.14) into (M4), the model (M4) can be re-written as the following
equivalent LP model (M5). The new objective function is defined by equation (2.14), and equation
(2.13) gives us the second constraint of the following model (M5).
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Model (M5) is an LP model. By applying this model any k" DMU under common weights can improve
its e Lciehcy by reducing inputs under CSOI, or increasing output under CSOO, or both. The model
is feasible since it is the linear form of model (M3), which has already been proved to be feasible.
However, model (M5) does not minimize the amount of input/output transfer. Let 6cWHi =1,...,n)
be the common-weight e [ciehcy of all DMUs after the applying model (M5). We now design a model
to minimize the input/output transfer while ensuring that the e [ciehcy of the DMUs does not reduce
any further. This LP model (M6) is as follows:
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Applying model (M5), followed by model (M 6), we can calculate the minimum necessary input/output
change that allows the observed DMU k to become e [cieht, without reducing overall e [ciehcy in the
system.

3 Numerical Example

The example uses data for 14 hospitals, with the inputs being the number of doctors (Input 1), nurses
(Input 2) and the outputs being the number of outpatients (Output 1), inpatients (Output 2). The
data is obtained from the work of Cooper et al. (2007). In this example, we assume that the number
of doctors (Input 1) and inpatients (Output 2) are under the CSOI and CSOO constraint respectively,
and that the DMUs are under Common Weights (CW). These assumptions are made only as part of
the demonstration. The data for the DMUs, as well as the original e [ciehcy score under CW, is shown
in the table below.

Table 1: Input, Output, and Common Weight E [ciehcy Data of 14 Hospitals







and the e Lciehcy of all DMUs is measured using a common set of weights. While there exists work
on the common set of weights problem in DEA, and the constant sum of inputs/outputs problem,
this paper’s models address situation where both constraints are in operation. The problem is solved
with a two-step process using two LP models. The first model determines the necessary amount of
input/output change in the observed DMU which leads to it achieving e [ciehcy. The second LP model
determines the minimum change in each parameter while ensuring that overall e [ciehcy in the system
does not sulerl These models address a gap in existing literature, and can be applied in any situation
where a single DMU is seeking to improve e Lciehcy when there is a limit on total input/output, and
parameter weights have a common value. It may be noted that while the observed DMU'’s e [ciehcy
and the overall e [ciehcy has been improved, some individual DMUs may su [er e Cciehcy reduction.
A future direction of research may be to improve the observed DMU and overall e Lciehcy, without
reducing e [ciehcy in any other DMU.
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