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A Polyhedral Study of Generalized Assignment Problem

with Demand Constraints

1 Introduction

The traditional Generalized Assignment Problem (GAP) is a classical NP-hard discrete optimization prob-

lem. It consists of minimizing the assignment costs of a set of jobs to a set of machines while satisfying

the capacity constraints. It is one of the most widely addressed problems in the integer programming and

combinatorial optimization literature (Cattrysse and Van Wassenhove, 1992).

The purpose of this paper is to study a problem similar to the GAP where a set of agents with limited

pro�ciency are assigned to a set of jobs to satisfy their demands. The demand constraints are typically the

well-known knapsack inequalities in the form of greater-than-or-equal-to type constraints. Like the GAP, an

agent can be assigned to one job only. I assume that the cost of assignment is proportional to the pro�ciency

of the agent. I refer to this problem as generalized assignment problem with demand constraints (GAPD).

Hence, it is a variant of the GAP.

GAPD has numerous real life applications and it may also appear as a sub-problem in several other

problems. Although, I started with a problem that considers assignment of agents to jobs, problems with

similar structures arise in many other real life scenarios. I provide a few such examples here. In a software

development �rm, managers often estimate the man-hour requirements for the ongoing projects and allocate

a group of software professionals in form of teams to di�erent projects to meet the requirements. Also, GAPD

appears as a sub-problem to sta� scheduling and rostering problem where a �rm constructs work timetables

for its sta� to satisfy the demand for goods or services. The application areas of sta� scheduling and rostering

include health care systems, transportation services such as airlines and railways, emergency services such

as police, ambulance and �re brigade, call centres, and other service �rms like hotels, restaurants and retail



assigned to job j ∈ N . I denote dj ≥





∑
j∈N

∑
k∈Sj

ck ≤ α. Now, any data instance I of the 3−PARTITION problem can be pseudo-polynomially

transformed, without loss of generality, into an equivalent instance Î of the restricted GAPD (i.e., a case

of multiple knapsack problem) by setting dj = B for j ∈ N , ck = 1 for k ∈ M and α = |M| (Martello,

1990). As a 3−PARTITION problem is strongly NP-hard, the restricted GAPD is also NP-hard (Garey and

Johnson, 1979). Hence, the GAPD as a generalization of the restricted GAPD must also be NP-hard.

2.1 Individual Cover Inequalities

GAPD has a special structure. The problem consists of |N | number of greater-than-equal-to type of knapsack

constraints. Let, PKP (j) denotes the knapsack polytope corresponding to job j ∈ N . Then,

PKP (j) =
{ ∑

k∈M
ajkxjk ≥ dj |xjk ∈ {0, 1} , k ∈M

}
,∀j ∈ N .

The knapsack polytope PKP (j) is a relaxation of XGAPD. Cover inequalities were introduced by Balas

Balas (1975), Hammer et al. Hammer et al. (1975) and Balas et al. Balas and Zemel (1978) for a knapsack

polytope. Later, Gottlieb and Rao Gottlieb and Rao (1990b) also derived the individual cover inequalities

for GAP. Here I present similar inequalities for the PKP (j).

De�nition 2.1. A set Cj ⊆M,∀j ∈ N and C̄j :=M\Cj . Cj is an individual cover for j ∈ N if

∑

k∈C̄j

ajk < bj .

If Cj is a cover for job j ∈ N , then C̄j



is valid for PGAPD.

Next, I introduce the extended individual cover to obtain stronger inequalities. For a minimal individual

cover Cj , let a
∗
j := maxk∈Cj ajk and E(Cj) = {k ∈ C̄j |ajk ≥ a∗j}. Then, the following set of inequalities are

referred as extended individual cover inequalities:

∑

k∈Cj∪E(Cj)

xjk ≥ 1 + |E(Cj)| (5)

Similar to Gottlieb and Rao Gottlieb and Rao (1990b), I also derive the set individual (1, kj)-con�guration

inequalities for each job.

De�nition 2.3. For each j ∈ N , a set M
′
j ∪ {z} is a (1, kj)-con�guration if M

′
j ⊂ M, |M ′

j | = m
′
j and

z ∈M\M ′
j are such that

(i)
∑
k∈M\M ′

j
ajk ≥ dj ,

(ii) Kj ∪ {z} is a minimal cover for each Kj ⊆ M
′
j with |Kj | = kj where kj is an integer satisfying

2 ≤ kj ≤ m
′
j (i.e., elements inM\

{
Kj ∪ {z}

}
can't satisfy the demand dj).

Proposition 3. The individual (1, kj)-con�guration inequality

(rj − kj + 1)xjz +
∑

k∈Rj

xjk ≥ (rj − kj + 1) (6)

is valid for PGAPD, where Rj ⊆M
′
j , |Rj | = rj satisfying kj ≤ rj ≤ m

′
j.

If kj = m
′
j , I observe that the individual (1, kj)-con�guration is a individual minimal cover.

2.2 Multiple Cover Inequalities

In this section, I restrict my attention to inequalities that consider multiple jobs. Next in Proposition 4, I

present several classes of valid inequalities corresponding to a subset of jobs.

Proposition 4. (a) For some job p ∈ N , let S ⊂M be a set of agents such that S is a cover, i.e.,
∑
k∈S̄ apk <

dp. Let, kp = arg mink∈S̄ apk. There doesn't exist any agent v ∈ S, such that
∑
k∈S̄\{kp} apk + apv ≥ dp,

i.e., substituting any agent from set S for the agent in S̄ with minimum pro�ciency is not enough to satisfy

the demand dp.

(b) For another job l ∈ N, l 6= p, let T̄ ⊂ S be a set of agents such that T̄
⋃ {s} is an anti-cover for all

s ∈ S̄, i.e., ∑k∈T̄ alk + als < bl. Equivalently, for all agent s ∈ S̄, the set of agents T\{s} is denoted to be

a cover for job l, where T = M\T̄ .
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Figure 1: Multiple Cover Inequality

(c) Also, there doesn't exist any agent t ∈ S\T̄ , such that the set of agents T̄
⋃ {t} satisfy the demand

dl, i.e.
∑
k∈T̄ ⋃{t} alk � dl.

Then the following inequality is valid for the PGAPD polytope:

∑

k∈S
xpk +

∑

k∈T\S̄
xlk ≥ 3.

Proof. To prove the proposition, I consider three non-trivial cases.

Case 1: For a job p, let xpk = 1, k ∈ S̄, and for job l, let xlk = 1, k ∈ T̄ . In that case, at least 1 additional

resource is required to complete job p, whereas at least 2 additional resources are required to complete job

l, i.e.,
∑
k∈S xpk ≥ 1 and

∑
k∈T\S̄ xlk ≥ 2.

Case 2: For a job p and for an agent s ∈ S̄ let xpk = 1, k ∈ S̄\{s}; whereas for job l, let xlk = 1, k ∈ T̄

and xls = 1. From Proposition 1(a), I know that
∑
k∈S̄\s apk +apv < dp for all agent v ∈ S; hence, at least 2

additional resources are required to complete job p, i.e.,
∑
k∈S xpk ≥ 2. From Proposition 1(b), I know that

T̄
⋃ {s} is an anti-cover and from Proposition 1(c), I know that

∑
k∈T̄ ⋃{t} alk < dl for any agent t ∈ S\T̄ .

Hence, at least 1 additional resource is required to complete job l, i.e.,
∑
k∈T\S̄ xlk ≥ 1.

Case 3: For a job p and for any two agents s1, s2 ∈ S̄ let xpk = 1, k ∈ S̄\{s1, s2} and for an agent t ∈ T̄

(i.e., t ∈ S as S ⊃ T̄ ) , xpt = 1; whereas for job l, let xlk = 1, k ∈ T̄\{t} and xl,s1
= 1, xl,s2

= 1. In that case,

from Proposition 1(a), it can be easily shown that at least 1 additional resource is required to complete the

job p, i.e.,
∑
k∈S xpk ≥ 2. From Proposition 1(b) and Proposition 1(c), it can also be easily shown that at

least one additional resource is required to complete job l, i.e.,
∑
k∈T\S̄ xlk ≥ 1.

For all these three non-trivial cases presented above, I need exactly 3 agents to complete both the jobs p

and l. For all other trivial cases, it can easily shown that the minimum number of agents required to both

the jobs p and l are at least 3. Hence, the inequality
∑
k∈S xpk+

∑
k∈T\S̄ xlk ≥ 3 is a valid one. It completes

6



the proof of the proposition.

Example 1. Let us consider an example with 2 jobs and 5 agents. The constraints to the problem is given

by:

4x11 + 3x12 + 5x13 + 4x14 + 3x15 ≥ 7

3x11 + 4x12 + 5x13 + 2x14 + 3x15 ≥ 8

Let, p = 1 and S̄ = {1}, then cover set S = {2, 3, 4, 5}. Set {1} be anti-cover for job 1 as 4 < 7 (doesn't

satisfy demand). The inequality x12 + x13 + x14 + x15 ≥ 1 is a cover inequality for job 1.

Let, l = 2 and T̄ = {4}, then T = {1, 2, 3, 5}. For all s ∈ S̄ = {1}, T̄ ∪ {s} is an anti-cover. The cover

for job 2 is the set T\{s},∀s ∈ S̄. Then, the inequality x12 + x13 + x15 ≥ 1 is cover inequality for job 2. A

cover inequality considering multiple jobs is given by:

5∑

k=2

x1k +
∑

k∈{2,3,5}
x2k ≥ 3.

The set of all feasible integer points are given below. The inequality above satis�es all the feasible integer

points. At the same time, please check that, for l = 2, if T =



∑

k∈S
xpk +

∑

j∈W\{p}

∑

k∈Tj\S̄
xjk ≥ |W |+ 1.

The proof for Corollary 1 is essentially the same as for Proposition 4. Next in Proposition 5, I present

another variant of multiple cover inequality.

Proposition 5. (a) For some job p ∈ W , W ⊂ N and a set of jobs C̄ ⊂ M , |C̄| = c is such that C̄ is an

anti-cover ( C = M\C̄ is a cover), i.e.,
∑
k∈C̄ apk < dp. Let, kp = arg mink∈C̄ apk. There doesn't exist any

agent s ∈ C, such that
∑
k∈C̄\{kp} apk + aps ≥ dp, i.e., substituting any agent from set C for the agent in C̄

with minimum pro�ciency is not enough to satisfy the demand dp.

(b) for each job j ∈W\{p} , there exists a set of agents T̄j ⊂ C and

C̄j =
{
k ∈ C̄

∣∣T̄j
⋃
{k} is an anticover for k



1

cm

∑

k∈C
xpj +

∑

j∈W\{p}





1

cj

∑

u∈C̄j


∑

k∈Tj

xjk − xju





+

cm − 1

cm
c

≥ 1

cm
+

∑

j∈W\{p}

cj
cj

+
cm − 1

cm

∑

k∈C̄

∑

j∈W
xjk

=
1

cm
+ |W\{p}|



1

cm

∑

k∈C
xpj +

cm − 1

cm

∑

k∈C
xpk +

∑

j∈W\{p}





1

cj

∑

u∈C̄j


∑

k∈Tj

x



Figure 2: Multiple Cover Inequality

By de�nition of the �ow cover, if the agents in the set K̄ ⊂ M is already assigned to job p ∈ N , then

the residual demands that are required to ful�l are,

∑

k∈K
apkxpk ≥ λ.

If any agent `1 ∈ K is assigned to job p by keeping all the agents in K\{`1} left unassigned, then the

minimum �ow required to ful�l the demand dp are

∑

k∈K\{`1}
apkxpk = max {λ− ap`1

, 0} = λ−min {λ, ap`1
} .

I extend it further by induction. If any two agents `1, `2 ∈ K are assigned to job p by keeping all the

agents in K\{`1, `2} left unassigned, then the minimum �odp areXk∈K\{`



∑

k∈K
apkxpk ≥ λ−

∑

k∈K
min {λ, apk}


1−

∑

j∈N\{p}
xjk




⇒
∑

k∈K
apkxpk +

∑

k∈K
min {λ, apk}


1−

∑

j∈N\{p}
xjk


 ≥ λ,

so the inequality is valid.

3 Conclusion and Recommendations for Future Research

This paper establishes several valid inequalities to solve the GAPD e�ectively. Thus, I study the polyhe-

dral properties of the convex hull of the GAPD which comprises of a set of greater-than-equal-to types of

knapsack inequalities (each knapsack corresponds to a job) with SOS constraints. The GAPD appears as a




