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Arithmetic Algorithms for Ternary Number
System

Subrata Das, Parthasarathi Dasgupta and Samar Sensarma

Abstract—The use of multi-valued logic in VLSI circuits
ca4(v)18.2172ialso been proposed, and shown to be quite efficient in termsof time complexity. In the second part of this paper wehave discussed a special class of Boolean function, known asRotation Symmetric Boolean Function in base-3. Algorithms
for Rotation symmetric Boolean Function in base-3 is alsoproposed in this paper.

Index Terms—Ternary number, trit, arithmetic, 3-valued
logic,VLSI.

I. I NTRODUCTION
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a b Y NOR
0

Y NOR
1

Y NOR
2

Y NAND
0

Y NAND
1

Y NAND
2

0 0 2 2 2 2 2 2
0 1 0 1 2 2 2 2
0 2 0 0 0 2 2 2
1 0 0 1 2 2 2 2
1 1 0 1 2 0 1 2
1 2 1 2 1 0 1 0
2 0 0 0 0 2 2 2
2 1 0 0 0 0 1 2
2 2 0 0 0 0 0 0

TABLE VI
TRUTH TABLE FOR TERNARY NOR AND NAND GATES

D. Ternary Full Adder

The following Table VII is the truth table of full adder.
The expression forSUM is A

⊕
B
⊕

C.

a b cin cout sum

0 0 0 0 0
0 0 1 0 1
0 0 2 0 2
0 1 0 0 1
0 1 1 0 2
0 1 2 1 0
0 2 0 0 2
0 2 1 1 0
0 2 2 1 1
1 0 0 0 1
1 0 1 0 2
1 0 2 1 0
1 1 0 0 2
1 1 1 1 0
1 1 2 1 1
1 2 0 1 0
1 2 1 1 1
1 2 2 1 2
2 0 0 0 2
2 0 1 1 0
2 0 2 1 1
2 1 0 1 0
2 1 1 1 1
2 1 2 1 2
2 2 0 1 1
2 2 1 1 2
2 2 2 2 0

TABLE VII
TERNARY FULL ADDER

The expression for carry is
s ∧ ((A ∧ B ∧ C) ∨ (A ∧ B ∧ C) ∨ (A ∧

1

CA
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symbolssi in terms of another system of symbols then
the main problem of representation is the following

1) How to represent the source symbols so that their
representation if far apart in some suitable sense. As
a result in spite of small changes(noise),the altered
symbols can be discovered to be wrong and even
possibly corrected.

2) How to represent the source symbols in a minimal
form for purposes of efficiency. The average code
length, L=

∑q
i=1 pili is minimized whereli is the

length of the representation of theith symbolsi.

In some early days one variable length ternary code
was popularly used for communication known as Morse
code.Three different symbols of this code are dash(-),dot(.)
and space( ).The length of the high frequency alphabet such
as ”E” is small and that of low frequency alphabet such
as”J” is long. As a result the average length of the code
is reduced.[6]

V. A RITHMETIC OPERATION ONT
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D. Addition and subtraction of two conventional ternary
numbers

For addition of conventional ternary numbers we have to
use the truth table for full adder as shown in Table VII.For
substation(A-B) we have to take 3’s complement of B and
add it to A.3’s complement of a number can be easily
obtained by interchanging 0 and 2 followed by add 1 to
it.
The Figure 1 shows few examples of addition and subtrac-
tion of two conventional ternary numbers.
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BR=011110, QR=022112, -BR=211120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Final product=001101212020 

 

QR[0]QR[-1]  Operation  AC  QR  QR[-1]  SC 

  Initialization      000000  022112  0  6 

20  AC=AC-BR 
 
AShr and Sc=Sc-1 

    211120  
    211120 
    221112 

 
 
002211 

 
 
2 
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12  AC=AC+BR 
AC=AC+BR 
 
 
Ashr and Sc=Sc-1 

    011110 
[1]002222 
     011110 
     021102 
     002110 

 
 
 
 
200221 

 
 
 
 
1 
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11  AC=AC+BR 
Shift right 
Sc=Sc-1 

     011110 
     020220 
     002022 

 
 
020022 

 
 
1 

 
 
3 

21  AC=AC-BR 
 
Ashr & Sc=Sc-1 
 

     211120 
     220212 
     222021 

 
 
202002 

 
 
2 

 
 
2 

22  Ashr       222202  120200  2  1 

02  AC=AC+BR 
 
Ashr & Sc=Sc-1 

     011110 
[1]011012 
     001101 

 
 
212020 
 

 
 
0 

 
 
0                               

Fig. 3. Example of multiplication of two conventional ternary numbers

B. Multiplication Algorithm using balanced ternary num-
bers

For multiplication we store multiplicand in a register
BR, say, and Multiplier in registerQR, say. Initially,
we assume that product is zero. This is known as the
partial product, where apartial product is obtained by
multiplying the multiplicand with one trit of the multiplier.
In simple multiplication, if the bit of the multiplier is
1 then multiplicand is added with the partial product to
generate a new partial product. Now the next bit of the
multiplier is multiplied with multiplicand and the product
is shifted by one trit to the left and added with the partial
product to generate a new partial product. But in case of
hardware multiplication (using registers), instead of shifting
the multiplicand× c (wherec is a trit of the multiplier,
having value 0 or 1 or1) to the left we shift the partial
product one trit to the right. This operation has been defined
for trits in [2].The entire operation is shown in Figure 4.

Lemma 1. If a and b are two ternary numbers such that
a is minimum andb is maximum thenb < 3× a.

Proof: Let a=10...0=3n−1 andb=222...2=2×
∑n−1

i=0 3i.

Now a
b
=2×

∑
n−1

i=0
3i

3n−1 =2 + 2×
∑

n−2

i=0
3i

3n−1 =2 + (
∑

n−1

i=1
3i−1)

3n−1 .

Now 1 <
∑

n−1

i=1
3i

3n−1 < 2. ∴ a
b

< 3. ∴ b < 3× a.

C. Division Algorithm using conventional ternary number
system

In order to divide a number by another, we store the
dividend in registerQ and divisor in registerM . During

START

BR=MULTIPLICAND
QR=MULTIPLIER
AC=0,SC=n,ER=0

QR[0]=?

QR[0]=?

Sc=0?

AC=AC+BR

AC=AC-BR

AShr(ER,AC,QR)

Sc=Sc-1

RESULT in AC & QR

STOP

STOP
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START

A=0,Q=Dividend,
M=Divisor,Size= n

Left Shift (AQ)

A?

SetQ[0]=0A=A-M

A?

A=A-M

A=A+MSet Q[0]=1

A=A+M

Set Q[0]=2

Size=Size-1

Size
=0?

Quotient in Q
Remainder in R

End

-Ve+Ve or 0

-Ve+ve or 0

yes

No

Fig. 5. Flowcharts for Division Algorithm for two non negative numbers
using conventional ternary number system

D. Division Algorithm using balanced ternary number sys-
tem

The division of two nonnegative ternary numbers is
discussed in[21] and the flow chart for that algorithm is
shown in Figure 7.Here we describe the algorithm when
the dividend is negative.In this case instead of subtracting
the divisor from the set of trits of dividend is added with
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START

A=0,Q=Dividend,
M=Divisor,Size= n

Left Shift (AQ)

A?

SetQ[0]=0

A=A-M

A=A+M

SetQ[0]=1

A=A+M

Size=Size-1

Size
=0?

Quotient in Q
Remainder in A

End

-Ve+Ve or 0

+Ve

yes

No

A?
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we propose an algorithm to generate the partitions of
rotation symmetric Boolean functions where apartition
is a set of a trit string and the rotations of this string,
such that the output of each of these strings as input
provides the same output.Generation of these functions
are known to be combinatorially explosive. It is known
that, for n-variableRSBF functions, the associated set of
input bit strings can be divided into a number of subsets
(called partitions), where every element of a subset can
be obtained by simply rotating the string of bits of some
other element of the same set.Formula for generating the
partitions for Rotation Symmetric Boolean Function in
any basegn,p = 1

n

∑
t|n φ(t)p

n

t [5]. Figure 10 shows the
partitions generated forn = 4.

Definition 1. If a Boolean functionf(xn−1, xn−2, . . . , x0)
exhibits rotation symmetry, then the period over which its
exhibits this property is defined to be the cycle length for
the function.

{(0000)} partition 0
{(0001) (0010) (0100) (1000)}partition 1
{(0002) (0020) (0200) (2000)}partition 2
{(0011) (0110) (1101) (1011)}partition 3
{(0012) (0120) (1200) (2001)}partition 4
{(0021) (0210) (2100) (1002)}partition 5
{(0022) (0220) (2200) 2002} partition 6
{(0101) (1010)} partition 7
{(0102) (2010) (0201) (1020)}partition 8
{(0111) (1110) (1101) (1011)}partition 9
{(0112) (1120) (1201) (2011)}partition 10
{



10



11

Algorithm genpartC()

Data structures: Counter = Number of partitions, Answer[]=Starting string of partition
Input: Number of trits
Output: Starting string of every orbit and total number of orbits

1. Initialization: Counter=0,number1=0n−111 and number2=0n−121;
2. Answer[0] = 0n; (*an means a string ofn trits*)
3. Counter=counter +1;
4. while trit-string corresponding tos = {112n−1} do
5. number1=number1+3 and number2=number2+3
6. While the starting of any partition(i.e. number1 and number2) is less than any element of the particular orbit then goto step 8
7. If the next number becomes{110n−1} then number1={11012n−2 + 1} and number2={11012n−2 + 2}
8. Take the trit-string corresponding to number1=number1+3 and number2=number2+3
9. Answer[counter++]=number1 and Answer[counter++]=number2
10.Endwhile
11. counter=counter+1
12.Answer[counter]={2n}


