

# INDIAN INSTITUTE OF MANAGEMENT CALCUTTA

# WORKING PAPER SERIES

WPS No. 705/ July 2012

# Energy Utility Fuel Allocation Model for Non-Linear Revenue and Regulatory Tariff Implications

by

Balram Avittathur Professor, IIM Calcutta, Diamond Harboroad, Joka P.O., Kolkata 700 104 India

# Energy Utility Fuel Allocation Model for Non-Linear Revenue and Regulatory Tariff Implications

## Abstract

The primary motivation for this paper is based on the challenge faced by a utility firm that generates its electricity through multiple coal fired thermal power plants. The utility firm operates in a regulated market

(including interest expenses). To encourage maximum generation of power, the regulatory authority allows this cost to be fully recovered only from a particular level of plant capacity utilization by having a scaled capacity component of unit tariff till this target level. This implies that any production below this target level would result in the utility firm not recovering fully its capacity cost. As an incentive for production beyond the target utilization, the regulatory authority permits the firm to charge the same capacity component of unit tariff for generation beyond the target level. The energy component of unit tariff is independent of plant utilization or fixed costs and is based on the technology used by the plant and a weighted average coal cost based on a bundle of different coal types. Older plants are allowed to charge a higher energy component to compensate for the higher amount of coal required per unit output of electricity. The total cost incurred by the utility firm is based on the coal, coal freight and variable costs of a bundle of different types of coal and the utility firm could improve its profitability by using a higher proportion of cheaper coal.

The secondary motivation for this paper is to address the regulatory tariff issue and explore whether the

integer non-linear power-generation expansion planning problem as one of the most complex optimization problems. They propose a GA-heuristic based method to solve their problem. Though there is sufficient information in the internet and industry reports (Wikipedia Contributors, n.d.) on utilization based utility tariffs, scholarly articles on same considering fuel shortages in regulated markets appears to be sparse. This paper attempts to contribute to literature in this area.

#### 2. The Utility Firm: Relevant Data and Current Fuel Allocation

The utility firm studied produces its electricity through six coal fired thermal power plants located in five different geographic locations. Let  $I = \{i|i = 1, 2, ..., I\}$  indicate the set of electricity generation plants. Let  $J = \{j|j = 1, 2, ..., J\}$  indicate the set of coal sources. The utility firm annually negotiates with coal companies and the railroad company before the beginning of a financial year. Thus, the coal cost, freight charge and coal availability are information available before the start of the year and are not subject to volatility. Let  $A_j$  denote the annual availability of coal from source j,  $C_j$  denote the unit coal cost for procuring from source j and  $f_{ij}$  denote the unit coal freight charge for transporting coal from source j to plant i. The remaining notations are  $C_i$  the peak load of plant i;  $q_{ij}$  the unit coal requirement at plant i using coal from source j;  $r_i$  the unit tariff energy component at plant i;  $s_i$  the capacity charge slope at plant i;  $t_i$  the target plant output (available for sale after factoring internal consumption) at plant i for realizing peak tariff capacity component;  $u_i$  the yield at plant i as a proportion of generation (amount available for sale after factoring internal consumption) at plant i using coal from source j. Let the decisions variables be denoted by  $x_{ij}$  the optimal electricity generation at plant i using coal from source j and  $X_i$  the optimal electricity generation at plant i. The relevant data are shown in the following tables.

| r           |         |         |            | ,         |                  |         | - ,      |               |
|-------------|---------|---------|------------|-----------|------------------|---------|----------|---------------|
| Coal Source |         | Coal    | freight ch | Coal Cost | Availability (mi |         |          |               |
|             | Plant 1 | Plant 2 | Plant 3    | Plant 4   | Plant 5          | Plant 6 | (Rs./MT) | MTs per year) |
| A1          | 350     | 110     | 110        | 100       | 212              | 300     | 2225     | 4.15          |
| A2          | 350     | 110     | 110        | 100       | 212              | 300     | 4640     | 3.00          |
| В           | 300     | 190     | 190        | 190       | 300              | 300     | 1274     | 1.30          |
| С           | 350     | 110     | 110        | 100       | 250              | 300     | 1235     | 2.53          |
| D           | 479     | 517     | 517        | 500       | 300              | 818     | 763      | 9.15          |
| Imports     | 550     | 550     | 550        | 550       | 550              | 550     | 5000     | Unlimited     |

**Table 1A:** Coal freight charges  $(f_{ii})$ , Coal Cost  $(c_i)$  and Annual Availability  $(A_i)$ 

|             | -                                                  |         | _       | -                   |      |         |  |  |  |
|-------------|----------------------------------------------------|---------|---------|---------------------|------|---------|--|--|--|
| Coal Source | Coal requirement per unit power generated (MT/MWH) |         |         |                     |      |         |  |  |  |
| Coal Source | Plant 1                                            | Plant 2 | Plant 3 | 3 Plant 4 Plant 5 F |      | Plant 6 |  |  |  |
| A1          | 0.70                                               | 0.68    | 0.68    | 0.65                | 0.72 | 0.65    |  |  |  |
| A2          | 0.65                                               | 0.65    | 0.65    | 0.63                | 0.72 | 0.65    |  |  |  |
| В           | 0.70                                               | 0.70    | 0.70    | 0.70                | 0.72 | 0.70    |  |  |  |
| С           | 0.80                                               | 0.75    | 0.75    | 0.75                | 0.82 | 0.76    |  |  |  |
| D           | 0.90                                               | 0.90    | 0.90    | 0.85                | 0.95 | 0.88    |  |  |  |
| Imports     | 0.65                                               | 0.63    | 0.63    | 0.64                | 0.68 | 0.63    |  |  |  |

Table 1B: Coal requirement for unit power generated (q<sub>ii</sub>)

#### **Table 1C:** Other variable cost $(V_{ij})$

| CoolSource  | Other variable costs (Rs./MWH) |         |         |         |         |         |  |  |  |
|-------------|--------------------------------|---------|---------|---------|---------|---------|--|--|--|
| Coal Source | Plant 1                        | Plant 2 | Plant 3 | Plant 4 | Plant 5 | Plant 6 |  |  |  |
| A1          | 500                            | 500     | 500     | 550     | 500     | 500     |  |  |  |
| A2          | 500                            | 500     | 500     | 550     | 500     | 500     |  |  |  |
| В           | 700                            | 700     | 700     | 700     | 700     | 700     |  |  |  |
| С           | 550                            | 550     | 550     | 580     | 550     | 530     |  |  |  |
| D           | 630                            | 650     | 650     | 650     | 800     | 650     |  |  |  |
| Imports     | 500                            | 450     | 450     | 500     | 500     | 480     |  |  |  |

### Table 1D: Other details

| Detail                                                         | Plant 1 | Plant 2 | Plant 3 | Plant 4 | Plant 5 | Plant 6 |
|----------------------------------------------------------------|---------|---------|---------|---------|---------|---------|
| Peak Load, C <sub>i</sub> , (MW)                               | 1260    | 630     | 420     | 150     | 450     | 600     |
| Energy Charge, r <sub>i</sub> , (Rs/MWH)                       | 1784.3  | 1581.3  | 1581.3  | 1581.3  | 2044.2  | 1581.3  |
| Capacity charge slope, <b>s</b> <sub>i</sub> ,<br>(Rs./MW-MWH) | 0.68    | 1.56    | 1.94    | 5.49    | 2.22    | 1.36    |
| Target, t <sub>i</sub> , (MW)                                  | 886     | 487     | 325     | 115     | 279     | 464     |
| Yeild, U <sub>i</sub>                                          | 0.893   | 0.890   | 0.890   | 0.883   | 0.883   | 0.886   |

The firm currently allocates coal to the different plants that result in electricity generation as shown in the table below. This allocation enables the firm to operate at 90.66% of its peak load but results in a deficit of Rs. 6,754 million. The weighted average tariff per MWH turns out to be Rs. 2,082.

|             |         |                  | 0 0 00 - 00 - 00 | 0.01000 |         |         |                  |
|-------------|---------|------------------|------------------|---------|---------|---------|------------------|
| Coal Source |         | Coal Required (m |                  |         |         |         |                  |
|             | Plant 1 | Plant 2          | Plant 3          | Plant 4 | Plant 5 | Plant 6 | MTs per year)    |
| A1          | 90      | 100              | 68               | 70      | 190     | 176     | 4.15             |
| A2          | 147     | 63               | 42               | 22      | 95      | 148     | 3.00             |
| В           | 82      | 20               | 13               | 65      | 16      | 16      | 1.30             |
| С           | 90      | 114              | 76               | 0       | 56      | 38      | 2.53             |
| D           | 539     | 244              | 163              | 113     | 36      | 71      | 9.15C            |
| Imports     | 74      | 55               | 36               | 0       | 0       | 54      | 1.22             |
| Total       | 1022    | 596              | 398              | 270     | 393     | 503     | Firm Utilization |
| Peak Load   | 1260    | 630              | 420              | 150     | 450     | 600     | 90.66%           |

**Table 2: Current Allocation of Coal and Overall Utilization** 

amount of electricity that should be generated at a particular plant using coal of a particular coal source. The firm in question operates in a region of electricity shortages and, hence, we assume that it is capable of selling all the electricity that it generates. At plant i, the capacity component of unit tariff is  $s_i u_i X_i$  up to electricity generation of  $t_i / u_i$  and  $s_i t_i$  for electricity generation above  $t_i / u_i$ . Hence, the hourly revenue can be described as  $s_i [u_i X_i \quad u_i X_i \quad t_i ] r_i u_i X_i$ , where  $u_i X_i$ 

non-negative. The lower bound of  $X_i$ ,  $X_i^{L}$ , is the  $X_i$  value for which surplus is zero and increasing from there onwards. From Lemma 2, the surplus at plant i will be positive only if  $W_i$   $u_i \ s_i t_i \ r_i$  and the hourly surplus becomes non-negative at  $X_i$   $t_i / u_i$ . As  $W_i$  is the average unit cost based on coal sourced from different sources,  $W_{ij}^{min} \ dW_i \ u_i \ s_i t_i \ r_i$ . Hence, hourly surplus becomes non-negative at  $X_i$   $t_i / u_i$  when the coal is exclusively supplied from source  $j_i^1$ .

For  $X_i = t_i/u_i$  while using coal from source  $j_i^{\dagger}$ , the hourly surplus  ${}^{t}s_i u_i X_i = r_i \hat{u}_i = w_{ij}^{min} X_i$  is zero at  $X_i = w_{ij}^{min} = r_i u_i / s_i u_i^2$ . Hence, for  $w_{ij} \in r_i u_i$  and  $w_{ij} \neq r_i u_i$  the lower bounds of  $X_i$  are zero and  $w_{ij}^{min} = r_i u_i / s_i u_i^2$ , respectively.

Lemma 4: The linear function  $\bigwedge_{i=1}^{A} I_{i=1}^{A} I_{j=1}^{A}$ 

## **Heuristic Solution:**

- **Step 1:** Determine the  $X_i^L$  values for all i as per Lemma 3.
- **Step 2:** Set  $x_{ij} = 0$  for all i and j. Determine solution for the model including constraint in (8) using a solver like GRG nonlinear solver in Microsoft® Excel. Let  $X_i^{/}$  indicate optimal  $X_i$

## 5. Conclusions

The heuristic solution arrived at improves the functioning of the firm significantly. The current allocation of coal followed by the firm results in a deficit of Rs. 6754 million. Our heuristic solution enables the firm to have a surplus of Rs. 6834 million though it would operate only at 59.06% of its peak load capacity. This is owing to regulatory tariff pricing that makes it more profitable to shut-down a power plant rather than operate it at low utilization levels when the firm is faced witha io5.w[( )sources..9(a7]TJ10.909 52.300