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global economic developments and cultural differences between countries. Recent trend in 
globalization attempts to exploit decentralized human capital and knowledge base by 
collaborative works while retaining the administrative control by a central unit. In response to 
such opportunities, the organizations are tending to follow a more decentralized structure. A 
reliable measure of the level of decentralization in such a network would play a key role in 
assessing the impact of decentralization of work centers, governance, transportation and 
communication infrastructure on economic development, effectiveness of social policy 
implementations, supply chain management, project management, traffic management, and 
knowledge transfer in a social network (Bardhan 2002).  
 
The social structure in different subgroups of large product development teams may be different 
due to regional influence or organizational culture. This often leads to intergroup coordination 
and communication problems that may cause hindrances to product delivery or meeting 
deadlines.  Therefore, organizations have to do a trade-off between the level of centralization and 
cost. (Gupta & Govindarajan 1991) emphasizes that the knowledge flow patterns among 
different subsidiaries within the same MNC located in different locations can differ as reflected 
in the way a mix of formal and informal administrative control mechanisms are used to shape the 
actions of various subsidiaries and for each type of transactions, different subsidiaries may 
occupy central positions. (Inkpen & Tsang 2005) examines the effect of structural, cognitive and 
relational dimensions of social capital on the transfer of knowledge between the network 
members. The study proposes that different types of networks require different kinds of 
facilitating conditions to transfer knowledge among network members. The size of network is 
also important and one-size-fits-all analyses on network may not be suitable in tackling the 
complexity involved in the knowledge transfer processes. Centralization of public facilities may 
be good for better monitoring, control and maintenance but it leads to several problems ranging 
from accumulation of wastes, increased load on transportation infrastructure to healthcare 
systems eventually deteriorating the quality of life. Therefore, it is emphasized that  nena



Ravasz & Toroczkai 2010) emphasizes the need for approximation in computation of 
betweenness centrality as the computation of betweenness centrality is very difficult and time 
consuming especially for large networks with millions to billions of nodes. Such large networks 
may be approximated with known number of hubs and leaf nodes connected at those hubs and a 
general formula would help to compute the approximate centrality values of resembling network 
of any size and structure. Obtaining analytic expression for node centrality and the network 
centralization applicable to any arbitrary network is infeasible because it depends on the network 
topology and there are too many topologies to consider. Despite this difficulty, the analytic 
expressions for the network centralization corresponding to some standard network topologies 
should be worth exploring. Little research has been done to compare the behavior of these 
centrality measures in different types of network topology. Also, there is no unified measure of 
the level of decentralization in the network. Results on how the network centralization changes 
as the network gets decentralized into multiple interconnected subgroups are not known.  
 
The network centralization based on degree, betweenness, and closeness has been defined in 
(Freeman 1979), but the network centralization based on eigenvector centrality is not defined in 
the literature. There is no literature on systematic comparison of the four important centrality 
measures on some standard network configurations that may help understand the 
interrelationships between the centrality measures and relative centralization of various network 
configurations. Further, there is no benchmark network centralization value available in the 
literature for different network configurations except for the star configuration to measure and 
visualize the level of decentralization in the governance or organizational structure represented in 
the form of a network. There is a lack of closed form solutions for benchmark network 
configurations except the star configuration to quantify the level of decentralization in the 
network structures. Therefore the centralization values obtained using small sample network may 
not be scalable to large network and computation of centralization values is difficult for large 
networks as well as it becomes difficult to approximate real world network into simpler 
configurations. This may give erroneous research findings about the impact of decentralization in 
a large networked system on its performance and dynamics. This work attempts to fill this void 
in the literature by providing general formulae to compute the network centralization based on all 
the four centrality measures for some standard types of network configurations with comparable 
number of nodes as in the problem under investigation to compare and visualize the level of 
decentralization in the network structure. These formulae are scalable to any number of nodes in 
the network within some constraints put to achieve structural symmetry for ease in computation. 
The comparative analysis of these standard network configurations with any empirical network 
would help in getting insights into the level of decentralization in large empirical networks. 
 
This paper provides theoretical contribution towards analysis of the sensitivity of network 
centrality measures on the level of decentralization in a network. We analytically derive the 
formulae for the network centralization for some of the standard topologies of decentralized 
network and compare their centralization with the most centralized star topology. We suggest 
possible solutions to extend the concept of network centralization based on eigenvector 
centrality. Our research attempts to answer some of the following questions. How does the 
network centralization value based on different types on centrality measures change with the 
level of decentralization in the network and with the size of the network? How sensitive are these 
measures to the introduction of a central node to otherwise decentralized network with 



completely interconnected hubs? At what level of decentralization do the hub nodes become 
more important than the central node for any particular centrality measure? How do the centrality 
values scale with the size of the network? Do these centralization measures correlate with each 
other as the level of decentralization in the network increases?  The variance in node centrality 
corresponding to the four centrality measures for all the types of network has also been 
compared.  
 
Section 2 looks into the related research in this area. Section 3 analyses the network 
centralization measures based on the level of decentralization in the network. The results and 
discussions on the sensitivity of the centralization measures are presented in Section 4. Section 5 
draws concluding remarks. 
 
 
 
2. Related Research 
 
Centrality and network centralization measures have been used extensively in social network 
analysis literature to study the influence of important actors and analyze network structures 
arising in several practical scenarios. The basic idea behind the social network analysis is that the 
observed network structure of actors is the outcome of actions of various actors and social 
institutions in the society. Opinion and behavior within a group are more homogeneous 
compared to that between different groups. People connected across group may have alternating 
ways of behaving and such people attain an advantageous brokerage position in establishing 
links across structural holes between distant groups in the network. People with large number of 
contacts (degree) often play a role of opinion leaders. Opinion leaders help in propagating 
information across the social boundaries between groups in a network (Burt 1999). Such people 
can play the role of broker in bridging different groups across the structural holes and bring 
novel ideas into the groups thus creating a social capital (Burt 2004). Social capital of an 
individual refers to the benefits he can derive through his social network. The focus of social 
capital research is on the features of the network that contribute to the individual, whereas with 
key player research the emphasis is on which individuals are important for the network (Borgatti 
2006). (Friedkin 1993) has examined the relationship between the interpersonal power and 
interpersonal influence in resolving issues related to organizations. His findings suggests that the 
social structure that gives an individual social power have significant positive effect on the 
frequency of issue-related communications among the members of the organization that in turn 
have substantial effect on interpersonal influence. Two competing views on creation of social 
capital in a network has been presented in (Gargiulo & Benassi 2000; Burt 2001). A cohesive 
network provides a safety of cooperation while the structural holes provide flexibility in 
developing new ideas that may lead to innovations in the network. The network measures of 
social capital has been discussed in (Borgatti et al. 1998). It has been shown that the scale free 
network provides the fastest growth and diffusion of newly innovated knowledge (Lin & Li 
2010). 
 
(Renneboog & Zhao 2011) investigated the role of director networks on the top manager's 
compensation and the pay-setting process in the UK.  Literature shows that both formal and 
informal professional and social network affects the monitoring of economic and financial 



activities and corporate decision making. CEOs accumulate larger social capital by setting right 
kind of network amongst top management and directors as different types of network enables 
different kinds of managerial functions and hence drives the motive for forming right kind of 
networks in an organization. Indirect network are built for reasons of information gathering and 
direct networks helps in accumulating more managerial influence. Therefore, a CEO well 
connected with board directors often derives significantly higher compensation. Assessing the 
centrality of senior managers is important for any firm in corporate decision making and pay-
setting process in order to retain their competitive edge in the market. Network modeling of real 
world interconnected systems from diverse area is gaining attention in recent years (Uzzi 1997; 
Doerfel 1998; Newman 2003; Guckenheimer & Ottino 2008; Helbing 2008; Kolaczyk 2009). 
The topological properties of the network and identification of clusters play crucial role in 
understanding the internal structure and dynamics of a network (Newman 2008; Mishra et al. 
2009). Random matrix theory and spectral methods are used to study correlation based networks 
and identification of clusters in a network (Edelman & Rao 2005; Kim & Jeong 2005; Newman 
2006; Heimo et al. 2008). The concept of social network analysis has been used for analyzing 
interdependence structure between stock indices (Roy & Sarkar 2011a) and between the stocks 
(Roy & Sarkar 2011b)  in the global stock market. Trading among actors in stock option market 
show a distinct social structural patterns that affects the direction and magnitude of price 
volatility (Baker 1984 ). Bounded rationality and opportunistic behavior of economic actors 
gives rise to restrictive micro-networks. Such restrictive micro-networks may create 
differentiated macro-networks in large markets leading to information asymmetry due to 
inefficient communication among actors.  
 
The influence of social network on spread and cessation of smoking in a group of socially 
interconnected people have been investigated by (Christakis & Fowler 2008). They find that 
generally the whole group of smokers quit smoking together emphasizing the influence of social 
network on individual behavior to conform with the majority behavior in the group leading to the 
observed collective behavior of the entire group. Data available from online environment and 
information and communication systems has enabled vast amount of research in the broader 
domain of network science and in particular Social network analysis (Rosen et al. 2010). In a 
social network, position of actors defines the role of the actor therefore similarity among 
relations can be used to determine the group of actors into different classes known as 
equivalence classes of actors. There are several equivalence classes such as structural, 
isomorphic, regular etc defined based on the types of ties between the actors. The roles of 
individuals can in inferred from the pattern of ties that emerge due to the types of role played by 
the actor in the social network   (Wasserman & Faust 1994). Applying modality (different classes 
of node types) and equivalence concepts may facilitate understanding the social processes and 
patterns in the complex and voluminous data that is generated through social interactions of 
various agents (Hanneman & Shelton 2011).  
 
(Friedkin 1991) provides theoretical foundations for three complementary centrality measures 
based on elementary process model of social influence that explains why ties are formed or are 
broken in a social network. He classifies the three centrality measures arising due to three 
complementary effects namely total effect, immediate effect, and mediative effect. (Borgatti 
2005) pointed out that the most commonly used centrality measures make implicit assumption 
about the flow processes in the network and hence the measures derived using a different 



assumption applied to a flow with different characteristics may lead to wrong interpretation and 
answers. Therefore the centrality measure used to present a particular phenomenon should match 
with the appropriate kinds of flow processes. The centrality values for large networks may be 
estimated by using a sub-sample of the network.  But such estimate is likely to suffer from errors 
due to incomplete set of data in estimating these values. (Costenbader & Valente 2003) have 
investigated the impact of different levels of sampling of data from the population on the 
stability of centrality measures and shown that some centrality measures are more stable than 
others under different levels of sampling. The research highlights the impact of missing data on 
approximating the values of the centrality for the entire network using a smaller sample. We 
need a large set of data to estimate the centrality values in order to reduce the impact of missing 
data that may pose practical problems in many situations. Moreover, research gaps exist in 
analytical formulations of centrality measures in network topologies of varying degrees of 
decentralization levels.  
  
3. Impact of Network Configuration and Decentralization on Centrality Measures 
 
We have derived analytical expressions for all the four centrality measures for some standard 
network configurations with varying levels of decentralization. Such configurations arise in 
several practical situations (Wasserman & Faust 1994; Rivkin & Siggelkow 2007). In order to 
compare the sensitivity of the centrality measures, we have computed the node level centrality as 
well as the entire network level centralization measures based on all the four centrality measures 
for these network configurations. For those configurations, having complicated analytic 
expressions for centrality and centralization, we have computed their values numerically using 
MATLAB. We have also compared the variance of node centrality for these network 
configurations and the correlation between various centrality measures for some selected 
network configurations. We now present the derivations of the analytical expressions. 
 
 
3.1 Network centralization of some network configurations 
  
(Freeman 1979) has defined the generalized measure of graph centralization based on the 
differences in point centralities in the network and derived the general formula for graph 
centralization based on degree, betweenness and closeness centrality. The node centrality values 
are normalized by dividing them by the highest possible centrality value among all the nodes in 
the network. The general form of network centralization is given by  
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Where is the maximum value of normalized node centrality  among all the nodes 
based on a particular type of centrality measure, say A. The denominator denotes the maximum 



the most centralized configuration in case of degree, closeness and betweenness centrality. We 
observe some counterintuitive behavior of the denominator in case of eigenvector centrality as 
discussed in the following section.  Variance of node centrality in the network is another measure 
of network centralization (Wasserman & Faust 1994). Intuitively, in a strongly centralized 
network the variance of node centrality from the centrality of the most central node should be the 
highest. The closed form expression for this measure is complicated, but the level of 
centralization using this metric can easily be computed numerically using the expressions 
derived in this paper for the normalized node centrality value for different types of equivalent 
nodes in the network. 
 
3.2 Network centralization based on eigenvector centrality of nodes 
 
Eigenvector centrality is useful for analyzing the relative importance of nodes in a network such 
as social status of actors in a social network and detecting changes in the connectivity patterns in 
the neural architecture of human brain (Bonacich & Lloyd 2004; Lohmann et al. 2010). 
(Bonacich & Lloyd 2004) emphasizes that a person’s social status reduces with a positive link 
with a notorious person and increases with a negative link with a notorious person. The network 
centralization based on eigenvector centrality for star configuration can be shown to be equal to 

)1()1(  NN . The theoretical maximum value for the expression in the denominator can be 

shown to be equal to N-2 and it is achieved when the network constitutes of only two connected 
nodes (a dyad) and N-2 independent nodes. The eigenvector centrality of a node in a network is 
given by the respective component of the eigenvector corresponding to the largest eigenvalue 
(Bonacich 1987). If we define the eigenvector centrality of a node in a network to be given by 
the square of respective component, the network centralization based on eigenvector centrality 
for star configuration can be shown to be equal to )2( N . The later approach of defining the 
eigenvector centrality is more suitable for computing network centralization as the most central 
star topology achieves the highest value using this approach. The first approach does not give 
maximum value for star configuration used as a normalization constant in the denominator of 
Equation 1. For example, let’s consider a network topology constructed using np+1 nodes in 
which one central node connected to n hub nodes, and each of the hub nodes is connected to (p-
1) leaf nodes as shown in Figure 1( L). The sum of the deviation of centrality value from the 
maximum value in this case becomes 
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For p =2, and n>5 this expression becomes greater than the sum of deviation for star topology 

with same number of nodes (i.e. N = np+1) which is equal to .npnp   

 
If we define the eigenvector centrality of a node in a network to be given by the square of 
respective component, the sum of the deviations of the node centralities from the maximum 
centrality value based on eigenvector centrality for a network topology in Figure 1( L) becomes 
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The normalization condition of the eigenvector puts the following constraints on the values of x1 
and x2. 
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The eigenvalue equation puts the following constraints on the values of x1 and x2. 
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From these three relations the largest eigenvalue (λ
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If the eigenvector centrality of a node is defined as equal to the square of the component of the 
principal eigenvector rather the value of the component, the value of network centralization can 
be shown to be given by the following equation. Both the equations give the value of network 
centralization for the star network as 1. 
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3.5 Decentralized Network with a central node and n hubs 
 
Generalizing the network centralization for star topology to a decentralized topology with one 
central node connected to n hub nodes where each hub node have a star like configuration with 
p-1 leaf nodes (i.e. excluding the central and the hub nodes)  connected to it. This network will 
have total np+1 nodes. We have considered both the cases viz. the number of hubs n is less than 
or equal to p and the number of hubs n is greater than p. The general closed form expression for 
variance of centrality of nodes is complicated, therefore we omit them. However, the variance of 
centrality for any topology can easily be computed numerically using the normalized centrality 
values given in the table. 
 
Degree Centrality: The central node has a degree n and the hub nodes have a degree p each and 
the leaf node has a degree 1 each.   
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The normalization condition of the eigenvector puts the following constraints on the values of 
x1, x2 and x3. 
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The eigenvalue equation puts the following constraints on the values of x1, x2 and x3. 
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From these four relations the largest eigenvalue (λ) and the three components x1, x2 and x3 can 
be computed as given below. 
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If the eigenvector centrality of a node is defined as the square of the corresponding component of 
the principal eigenvector, then the network centralization can be derived as given below. 
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The normalization condition of the eigenvector puts the following constraints on the values of x1 
and x2. 
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The eigenvalue equation puts the following constraints on the values of x1 and x2. 
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From these three relations the largest eigenvalue (λ) and the two components x1 and x2 can be 
computed as given below. 
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Eigenvector centrality: Deriving closed form expression 
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The betweenness centrality can be computed by observing that the umber of geodesics the ith 

node falls on = 
2

3N
. The largest eigenvalue for the cyclic networks can be shown to be equal 

to 2. The components of eigenvector representing the centrality of all the nodes can be shown to 

be given by 
N

x
1

1  . Thus we can observe that all the four graph centrality of cycle graph 

becomes zero as all the nodes in this graph are equivalent having same relative centrality value. 
 
3.10 Complete graph: In a complete graph every node is connected to all other nodes. Degree of 
all nodes is N-1. Closen0 0 12 90 556.g sam
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defining EVC in this manner won't affect the relative ranking of the nodes in the network. The 
network centralization based on the centrality defined as the square of the components of the 
principal eigenvector gives the maximum network centrality value for star configuration as 
shown in Figure 5.  
 



of centrality measures as shown in Figure 7. There is a monotonous relationship between the 
variance of node centrality and the network centralization. We notice that the variance of all the 
types of node centralities increases with the level of decentralization. This measure of 
centralization has some counter-intuitive behaviour. For example, though cyclic and complete 
graphs have the least variance (zero) of node centrality, these two graphs have zero network 
centralization. Therefore, this cannot be used as a reliable measure of network centralization of 
any generic network configuration. 
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 (Perra & Fortunato 2008) has compared the centrality measures based on the spectral properties of graph matrices and shown that for graphs with special properties, the measures are often correlated with each other but for real graphs with less regular structure, the centrality measures are far less correlated. We investigated how the centrality values are correlated for the two types of configurations. The correlation between the five centrality measures discussed in this paper as 
the number of hub nodes increases in the network has been shown in table 1 and table 2. We find 

that the centrality measures are strongly correlated for the configuration without any central node while there is a varying level of correlation for the configuration with a central node. The two types of eigenvector centralities show strong correlation though not equal to unity. Degree 
centrality has relatively high correlation with both types of eigenvector centralities compared to 



the betweenness and closeness centralities. An interesting finding is that the betweenness 
centrality is negatively correlated with all other centralities for such configuration.  
 

Table 1: Correlation for network with a central node and hubs 
 

  Degree Betweenness Closeness EVC EVC (Comp Sqrd) 
Degree 1     
Betweeness -0.37899 1    
Closeness 0.09161 -0.19487 1   
EVC 0.750984 -0.52004 0.240882 1  

EVC (Comp Sqrd) 0.721989 -0.41398 0.134161 0.96637 1

 
 

Table 2: Correlation for network without a central node and hubs 
 

  Degree Betweenness Closeness EVC EVC (Comp Sqrd) 
Degree 1     
Betweeness 0.999901 1    
Closeness 0.911722 0.90862 1   
EVC 0.996507 0.996831 0.906238 1  

EVC (Comp Sqrd) 0.999882 0.999995 0.908671 0.997067 1

 
5. Concluding Remarks 
 
The sensitivity of various centrality measures on the level of decentralization of a network has 
been discussed. The issue with the derivation of network centralization based on eigenvector 
centrality of nodes of the network has been discussed and a modification in the eigenvector 
centrality measure for the nodes and normalization constant have been suggested in order to 
derive the network centralization in a unified manner compared to the other three measures. We 
have derived the theoretical formulae for the various network centralization measures of some 
standard network topologies with varying level of decentralization. Furthe



and the findings in this research may be used for approximating centrality values for large 
networks. 
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