

��

1��

��

A��Tale��of��Two��Searches:����

Bidirectional��Search��Algorithm��that��Meets��in��the��Middle��

��
Ambuj��Mahanti��

Management��Information��System��Group��
Indian��Institute��of��Management��Calcutta��

Joka,��D.��H.��Road,��KolKata�r700104��
��

Samir��K.��Sadhukhan��
Computer����Centre��

Indian��Institute��of��Management��Calcutta��
Joka,��D.��H.��Road,��KolKata�r700104��

��

Supriyo��Ghosh��
Infosys��Ltd.��

Manikonda��Village,��Lingampally����
Ranga��Reddy��District,��Hyderabad��500��032.��

��

2��

A��Tale��of��Two��Searches:��

Bidirectional��Search��Algorithm��that��Meets��in��the��Middle��

List of notation

G Implicit Graph

s Start node

t Goal node

m, n, p, q, r, n1, n2… Nodes in G

d Direction of the current search; d=1 implies forward search from s to t,

d=2 implies��backward��search��from��t��to��s��

(m,n) Directed arc from node m to node n in G

c(m,n) Cost of arc (m,n) = the cost of reverse arc (n,m)

�G Small positive number

gd*(n) Cost of a minimal cost path from s to n if d=1, or from n to t if d=2

hd*(n) Cost of a minimal cost path from n to t if d=1, or from s to n if d=2

h*(s) Cost of a minimal cost solution path in G

gd(n) Estimate of gd*(n)

hd(n) Estimate of hd*(n)

�*(n) Operators at node n

P Directed path

c(P,m,n) Cost of a directed path P from node m to node n

FEd(P,n) Forward Error on a path P from s to n if d=1, or from n to t if d=2

��

3��

BEd(P,n) Backward Error on a path P from s to n if d=1, or from n to t if d=2

TEd(P,n) Total Error on a path P from s to n if d=1, or from n to t if d=2; equals

FEd(P,n) + BEd(P,n)

FEd*(n) FEd(P,n) when P is a minimal-cost path from s to n if d=1, or from n to t if

d=2

BEd*(n) BEd(P,n) when P is a minimal-cost path from s to n if d=1, or from n to t if

d=2

TEd*(n) TEd(P,n) when P is a minimal-cost path from s to n if d=1, or from n to t if

d=2; equals FEd*(n) + BEd*(n)

FEd(n) Estimate of FEd*(n)

BEd(n) Estimate of BEd*(n)

TEd(n) Estimate of TEd*(n)

��

4��

1. Introduction

The Sliding Tiles problem (also known as n-puzzle) is quite popular as a problem testbed in AI. This
problem is basically a game on a square grid, containing several tiles numbered consecutively from 1
to n and one blank space, such that n+1 is a square number. The blank space allows the movement of
an adjacent tile to the blank position, thereby swapping the positions of the blank space and the tile.
The objective of the n-puzzle is to arrive at a desired tile configuration (the end or goal state) starting
from a given configuration (the start state), in a minimum number of moves.

Minimization problems in discrete domains such as the n-puzzle are often modeled as directed

graphs. Each graph G contains a specified start node (s), a specified goal node (t), and a cost

function mapping each arc <m,n> into a nonnegative cost c(m,n). Modeled this way, the objective

function reduces to finding a least-costly path from s to t. Occasionally, a non-negative heuristic

function h(n) is defined on the nodes of the graph, with h(n) being an estimate of h*(n), the cost of a

minimal-cost path from n to t. Used appropriately, the heuristic can cut down the combinatorial

explosion of the search space and guide the search along better (more promising) solution paths.

Heuristic estimates are used in the evaluation functions of classical AI search algorithms such as A*

(1), IDA* (2), etc.

Algorithm A* finds a minimal-cost path from s to t by searching the graph in a best-first manner. It

creates two lists, one for the nodes which are yet to be expanded (the OPEN list) and another for

nodes which have already been expanded (the CLOSED list). For each node n

��

5��

admissible heuristics (h(n) <= h*(n) for all nodes n in G), A* terminates with an optimal solution,

h*(s).

In domains such as the n-puzzle problem, several heuristics have been proposed, each capturing the

domain information to a different degree. Some popular heuristics are: number of tiles out of place,

the Manhattan distance, etc.

A* is an admissible search algorithm, but it takes up too much memory (due to the maintenance of

OPEN and CLOSED lists) which can be prohibitive in many domains such as 15 and 24-puzzle. To

overcome this memory requirement of A* while also outputting an optimal solution, algorithm IDA*

has been proposed (2). IDA* works iteratively, each iteration being a depth-first search starting from

node s. In each iteration, a branch of the search tree is cut off when its total cost (f = g+h) exceeds a

particular threshold. Initially the threshold is set to the total cost estimate of start node s, h(s). Then

in each iteration IDA* sets the threshold for the next iteration equal to the minimum of all node costs

which exceeded the current threshold. Operating iteratively in this depth-first manner, IDA* outputs

the optimal solution cost if the heuristic function is admissible. Note that the memory requirement is

vastly reduced when compared to A*, as in each iteration IDA* needs to maintain only one path

from s to the current node n.

IDA* has been extensively studied in the heuristic search literature and it has been found efficient to

solve problems such as the 15-puzzle, for which the first successful execution of an algorithm was

reported in (2).

However, on larger instances of the n-puzzle, such as the 24-puzzle, neither A* nor IDA* have been

successful – A* due to its larger memory requirement, and IDA* due to its longer time of

processing. For such domains the Bidirectional Search is supposed to be more successful. We briefly

introduce this variant below. The rest of the paper will contain detailed description of different

Bidirectional search approaches, as well as our version of the same.

��

6��

��

7��

In this paper, we take a closer look at bidirectional search. We start with a brief survey of past
approaches to the bidirectional search – particularly algorithms such as BHPA, BS*, BIDA* etc.
Then we develop a more efficient bidirectional algorithm by exploiting particular search
characteristics. This is done by developing an “error-function” on the search path as a surrogate
of the evaluation function f. By defining the error function suitably, we show how it helps to
control the search more tightly and converges the Forward and Backward searches always in the
middle. Our theoretical results prove the admissibility and complexity of the algorithm. Traces of
the algorithm on n-puzzle illu

��

8��

currently-known least cost of a path from t to n, while h2(n) is the heuristic estimate of a path
from n from t. In the figure, dotted arrows indicate heuristics for unexplored paths in either
direction.

Admissible heuristics: The heuristic function is said to be admissible, if for both d=1 and d=2,

we have:

Clearly, we have, for d = 1 or d = 2:

Clearly, we have gd(n) >= gd*(n) and hd*(n) = g3-d*(n), where d can be 1 (for forward search) or
2 (for backward search).

Assumptions

1. All operators are reversible. The operator in forward direction (i.e. the arc given in the
implicit graph) is used for searching in the forward direction only. The reversed operators are
used in the backward search only. (Note: Whenever we speak of a directed path in the search
process, it means a path consisting either of arcs or of reverse arcs, but never a combination
of the two.) A reverse arc or reverse operator has the same cost as that of the corresponding
arc or operator. We denote this common arc-cost with only single link between nodes m and
n as c(m,n), where c(m,n) �t �G > 0.

2. The graph must contain exactly one goal node, denoted by t.
3. The goal node must be explicitly specified.
4. There is a path from the start node s to the goal node t with finite cost.
5. We place a mild restriction on the heuristic distribution, as follows: h1(s) = h2(t). This

assumption, which is quite realistic, is critical to prove the theoretical properties of our
algorithm.

)()()(3
*
3

* ngngnh ddd ���� �d�

Gnnhnh dd �•���d)()(*

��

9��

3. Literature Survey
��

Most��bi�rdirectional��search��algorithms��contain��two��sets��of��OPEN��and��CLOSED��nodes:��OPENF��and��
CLOSEDF��for��search��in��the��Forward��direction,��and��OPENB��and��CLOSEDB��for��search��in��the��
Backward��direction.��The��algorithm��starts��with��the��Forward��direction,��putting��s��in��CLOSEDF,��its��
successors��in��OPENF��and��computing��their��heuristic��values��and��evaluation��functions.��After��the��
first��Forward��iteration,��it��does��the��first��Backward��iteration,��using��t,��OPENB��and��CLOSEDB��,��and��
proceeding��in��a��reverse�rA*��like��manner,��generating��parent��nodes��instead��

��

11��

computing��the��heuristic��just��with��respect��to��a��goal,��but��with��respect��to��the��entire��OPEN��set��in��
the��opposite��tree.��

��An��intermediate��method��of��bidirectional��search,��known��as��perimeter��search,��has��been��
proposed��in��(8).��In��this��method,��first��a��one�rtime��breadth�rfirst��search��around��the��goal��node��is��
conducted,��creating��a��perimeter��P��around��the��goal��node��to��a��pre�rdetermined��fixed��depth��d1.��
Then��the��algorithm��proceeds��

��

12��

��,��which��is��just��a��constant��error��value��to��be��added��

to��hF��during��Forward��Search��(algorithm��Add�rBAA).����

Other��approaches��to��bidirectional��search��include��choosing��a��representative��node��from��each��
front��as��a��target��for��the��opposite��search��(d�rnode��retargeting,��(10));��conducing��bidirectional��
search��till ��the��search��trees��meet��for��the��first��time��and��then��switching��to��unidirectional��mode��in��
the��direction��which��has��higher��minimum��f�rvalue��in��OPEN��(11);��and��an��iterative�rdeepening��
approach��to��BHFFA��(12).����

Other��notable��work��related��to��bidirectional��search��include��an��algorithm��employs��a��much��more��
efficient��front�rto�rfront��evaluation��method��but��is��inadmissible��(13),��and��the��Divide�rand��Conquer��

Bidirectional��Search��(14)��which��reduces��the��space��complexity��of��the��algorithm��by��storing��only��the��OPEN��
lists��and��not��the��CLOSED��ones.��

4. Algorithm Meet-At-The-Middle – Dual Threshold MSG*

(As implemented in program)

Global variables: next_backward_threshold, next_forward_threshold, solution_found

Procedure Main()

Variable: threshold

1. next_backward_threshold = h2(t);
 next_forward_threshold = h1(s);

solution_found=0;

while (!solution_found)
 {
 threshold = next_backward_threshold;
 next_backward_threshold = create_backward_frontier(threshold);

 if (!solution_found) {

 threshold = next_forward_threshold;

 next_forward_threshold = forward_search(threshold);
 }
 }

��

��

13��

Procedure create_backward_frontier(ThreshB)

Do a dfs under ThreshB:

 If s is encountered, set solution_found

��

14��

TE1(P,n) = FE1(P,n) + BE1

��

15��

= 2 c(P2,s,t) – 2 h1(s) ---------------- (2)

Thus (1) – (2) yields

TE1(P1,n1) + TE2(P1,n1) – TE1(P2,n2) – TE2(P2,n2)

= 2 { c(P1,s,t) – c(P2, s,t)}

> 0, by assumption.

Conversely, let us assume that

TE(s) + TE

��

16��

= {h1(n2) – h1(n1) + c(n1,n2)} + {h 2(n1) – h2(n2) + c(n1,n2)}

= �t 0 + �t 0, as the heuristic is monotone.

Hence TE1(P,n2) �t TE1(P,n1).

 ��

Theorem-3a: Let P be a path below s in G. Let n1 and n2 be two nodes on P such that n2

��

17��

��

18��

Case II(b): ni+1* belongs to CLOSED. Proof that ni+1* belongs to another optimal path P’.

Then consider leading node of P’

��

19��

g1 h1 h2 g2 g1+h1-h2

��

21��

g1 h1 h2 g2 g1+h1-h2 g2+h2-h1

��

22��

Pno BTh HTable BackPass FwdPass Total IDA* Imprv h-val Opt CPU

1 7 201132 665061 16140424 16805485 276361933 16.44 41 57 30.00

��

23��

Pno BTh HTable BackPass FwdPass Total IDA* Imprv h-val Opt CPU

28 7 103829 351729 744800 1096529 5934442 5.41 36 52 3.00

29 7 439094 1835847 6011908 7847755 117076111 14.92 38 54 16.00

30 5 34989 110789 443384 554173 2196593 3.96 35 47 2.00

31 5 18395 55322 408125 463447 2351811 5.07 38 50 1.00

32 7 3665125 16714650 26575412 43290062 661041936 15.27 43 59 105.00

33 8 2125911 9709309 16434860 26144169 480637867 18.38 42 60 56.00

34 7 528287 2087381 1633201 3720582 20671552 5.56 36 52 8.00

35 7 1009283 4340836 4518596 8859432 47506056 5.36 39 55 18.00

36 7 298725 1158203 4275956 5434159 59802602 11.00 36 52 10.00

37 8 625293 2664890 11259900 13924790 280078791 20.11 40 58 25.00

38 5 44532 143261 2801568 2944829 24492852 8.32 41 53 6.00

39 6 341856 1488319 2222306 3710625 19355806 5.22 35 49 7.00

40 8 597149 2407238 4018758 6425996 63276188 9.85 36 54 13.00

41 8 379578 1400077 3090963 4491040 51501544 11.47 36 54 8.00

42 5 21919 70813 195168 265981 877823 3.30 30 42 1.00

43 7 985886 3382647 3861866 7244513 41124767 5.68 48 64 18.00

44 8 445724 1869522 6025995 7895517 95733125 12.12 32 50 15.00

45 5 70663 246670 1041812 1288482 6158733 4.78 39 51 3.00

46 6 90553 286254 2303442 2589696 22119320 8.54 35 49 5.00

47 5 25169 85305 325956 411261 1411294 3.43 35 47 1.00

48 4 45681 135863 398468 534331 1905023 3.57 39 49 1.00

49 12 5831003 36617867 32037125 68654992 1809933698 26.36 33 59 242.00

50 6 186062 674175 5143738 5817913 63036422 10.83 39 53 11.00

51 5 487236 1921378 3339133 5260511 26622863 5.06 44 56 9.00

52 8 719058 3045723 13040367 16086090 377141881 23.45 38 56 29.00

��

��

��

25��

Pno BTh HTable BackPass FwdPass Total IDA* Imprv h-val Opt CPU

79 6 31872 96617 146270 242887 540860 2.23 28 42 2.00

80 6 615895 2369719 7219175 9588894 132945856 13.86 43 57 17.0

81 6 39760 120769 1193495 1314264 9982569 7.60 39 53 2.00

82 10 6071770 30557880 91579379 122137259 5506801123 45.09 40 62 279.0

83 8 192812 703360 3831857 4535217 65533432 14.45 31 49 10.00

84 8 457948 1678539 7319872 8998411 106074303 11.79 37 55 16.00

��

26��

