

INDIAN INSTITUTE OF MANAGEMENT CALCUTTA

WORKING PAPER SERIES

WPS No. 667/ November 2010

Cross Entropy based Neighborhood Reduction and Initial Tour Formation for Tabu
Search on the Asymmetric Traveling Salesman Problem

by

Sumanta Basu
Assistant Professor, IIM Calcutta, Diamond Harbour Road, Joka P.O., Kolkata 700 104

India

&

Diptesh Ghosh
Associate Professor, IIM Ahmedabad, Vastrapur, Ahmedabad Pin-380015, India

Cross Entropy based Neighborhood Reduction and
Initial Tour Formation for Tabu Search on the

Asymmetric Traveling Salesman Problem

Sumanta Basu� Diptesh Ghoshy

Abstract

generated. At the end of the iteration, we update P as follows. Let nij

be the number of times that arc (vi ; vj) appears in the tours in E. Then
pij = nij =(e:n). After iter iterations get over, a sparse graphG0 = (V; A0)
is formed whereA0 = f (vi ; vj) : pij > 0g.

From preliminary experiments we observed that at the end of the speci-
�ed number of iterations, the output graph became too sparse and as a result
some of the tours did not have any neighboring tour. In such graphs, tabu
search was unable to better the best tour in theE list after iter iterations.
So motivated by Toth and Vigo (1998), we added a step in our algorithm in
which we chose a threshold� , and added those arcs inA whose costs were
less than the threshold toA0. The result of this operation is a denserG0 but
one in which some neighboring tours do exist for most tours.

Based on preliminary experiments with randomly generated ATSP in-
stances of sizes 100 and 250, we chosek, e, and iter as 50000, 1:5n and 20
respectively. We chose the threshold value� as 1.5 times the average of the
costs of arcs inE weighed by the frequency of their appearance.

3 Generation of Initial Tours

Performance of any local search heuristic like tabu search is often critically
dependent on the quality of the solution used as a starting point for the
algorithm. As the problem size increases, the solution space increases ex-
ponentially, and the choice of initial solutions becomes increasingly impor-
tant. Tabu search is implemented for large sized problems in the multi-start
mode. In this mode, tabu search is started from several initial tours which
are widely separated in the solution space. The best tour obtained in all
the runs is output by the algorithm. The preprocessing algorithm described
in Section 2 can be easily tweaked to generate initial tours. To do this, the
required number of initial tours are obtained from the tours present in the
elite set E at the end of the preprocessing algorithm.

4 Computational Experience

In this section, we �rst describe the tabu search implementations that we
create to test our preprocessing and initial tour generation schemes. We
then report the experiment design and test beds of problems that we use
for our experiments. Finally we present the results of our computational
experiments.

Tabu search implementations: We combined our preprocessing method
and initial tour generation method into three tabu search implementations,
labeled A through C. Each implementation is de�ned as a combination of the
preprocessing method used, method used to generate initial tours, and the

4

implementation of tabu search used. Two implementations of tabu search
described in Basu et al. (2008) were considered; the TS-CI implementa-
tion which is the conventional implementation designed for tabu search on
instances de�ned on complete graphs, and the TS-SAG implementation de-
signed for tabu search on instances de�ned on sparse asymmetric graphs. In
conventional implementations, non-existent arcs in a graph are represented
as in�nite cost arcs. Hence even though the neighborhood of a tour is much
smaller for an ATSP instance de�ned on a sparse graph than one de�ned on
a complete graph with the same number of nodes, conventional implemen-
tations of tabu search actually search a complete graph in the both cases.
TS-SAG uses special data structures to eliminate the need for in�nite cost
arcs and so tabu search actually searches a much smaller neighborhood.
This speeds up the TS-SAG algorithm signi�cantly compared to TS-CI on
ATSPs de�ned on sparse graphs. Table 1 describes the implementations
that we use for our computational experiments. All the implementations

Table 1: Details of implementations

Implementation Preprocessing Initial Tabu Search
Scheme Scheme Solution Implementation

A None Generated randomly TS-CI
B None From Section 3 TS-CI
C From Section 2 From Section 3 TS-SAG

were coded in C, were run on a computer with an Intel Quad Core 2.4GHz
processor and 3 GB of RAM. The length of the tabu list in all tabu search
implementations was �xed at 8.

Comparisons between di�erent implementations allow us to comment
on the usefulness of the preprocessing method and initial tour generation
method. A comparison of qualities of the tours obtained by implementa-
tions A and B shows us the e�ectiveness of the use of special methods to
generate initial tours for multi-start tabu search. A comparison between im-
plementations B and C shows us the usefulness of the preprocessing scheme
combined with the use of special tabu search implementation designed for
ATSPs de�ned on sparse graphs.

Test beds and computational experiments: We performed our ex-
periments on randomly generated ATSP instances as well as on benchmark
ATSP instances. Each of the instances was taken as described on a com-
plete digraph. The randomly generated instances consisted of ten problem
instances each of size 200, 300, 400, 500, and 600. The arc costs were cho-
sen as integers randomly in the interval [1; 1000]. The benchmark instances
consisted of 25 ATSP instances from Johnson et al. (2002) with 100 nodes

5

Table 3: Execution time in seconds required by the three implementations
to complete 1000 tabu search iterations

200 300 400 500 600
A Avg. preproc. time 0.00 0.00 0.00 0.00 0.00

Avg. of time for TS 43.16 127.94 277.31 497.39 821.05
Avg. of total time 43.16 127.94 277.31 497.39 821.05

B Avg. preproc. time 117.40 264.10 469.20 732.70 1052.50
Avg. of time for TS 42.32 131.77 287.32 533.45 873.23
Avg. of total time 159.72 395.87 756.52 1266.15 1925.73

C Avg. preproc. time 117.40 264.10 469.20 732.70 1052.50
Avg. of time for TS 3.14 7.44 12.83 19.69 29.18
Avg. of total time 120.54 271.54 482.03 752.39 1081.68

were better than those output by implementation A. Implementation B pro-
duced slightly better tours than implementation C although the tour costs
were not signi�cantly di�erent when tested at a signi�cance level of 0.01 (in
a paired-t test). From Table 3 we see that as expected, the time required
by tabu search in implementation C is much less than that required by tabu
search in implementations A and B. Overall, implementation C required
less time than implementation B, with the di�erence in the total time re-
quired increases with increasing problem size. Based on these observations,
implementation C seems to dominate other implementations for randomly
generated ATSP instances.

Table 4 summarizes the quality of tours output by the three implemen-
tations on the 25 benchmark ATSP instances. Since the costs of optimal
tours for these problems are very di�erent, we expressed the quality of tours
output by the three implementations as a multiple of the Held-Karp lower
bound (see Held and Karp, 1970, 1971) for that ATSP instance. Observe
that implementations B and/or C produced the least cost tours in 19 out
of the 25 instances. The four problems in the rgb class form a notable
exception, implementation A generated the best tours to these problem in-
stances. Table 5 presents the execution times required by the implemen-
tations on the benchmark problem instances. Between implementations B
and C which provide the best quality tours in most cases, implementation C

Table 4: Costs of tours output by the implementations as a multiple of
Held-Karp bound at the end of 1000 tabu search iterations

Implementation
Instance Size A B C

atex8 600 5.39 5.18 5.10
big702 702 5.22 5.30 5.36
dc112 112 1.01 1.01 1.01
dc126 126 1.00 1.00 1.03
dc134 134 1.01 1.01 1.02
dc176 176 1.02 1.01 1.03
dc188 188 1.01 1.01 1.02
dc563 563 1.05 1.05 1.08
dc849 849 1.05 1.05 1.05
dc895 895 1.02 1.02 1.13
dc932 932 1.01 1.01 1.11
ftv100 100 2.73 2.02 2.02
ftv110 110 2.78 2.16 2.29
ftv120 120 2.67 2.20 2.20
ftv130 130 3.11 2.25 2.25
ftv140 140 3.20 2.70 2.71
ftv150 150 3.34 2.27 2.45
ftv160 160 3.45 2.64 2.71
ftv170 170 3.64 2.89 2.85
kro124p 124 1.34 1.25 1.25
rbg323 323 2.86 3.16 3.16
rbg358 358 3.55 4.21 4.21
rbg403 403 2.11 2.48 2.48
rbg443 443 2.05 2.43 2.43
td100 1 100 1.32 1.12 1.12

the tours output by the di�erent implementations over the ten randomly
generated ATSP instances of a given size. The trends in the results from
these experiments closely follow their counterparts in the �rst set. Here
too, implementations B and C produced the least cost tours output and the
di�erence in the quality of tours output by implementations B and C is not
statistically signi�cant.

For benchmark problem instances, we increased the time limit to ensure
that tabu search could run from at least three initial tours for each of the in-
stances. These allowable time limits were made proportional to the problem
size. The execution times for the 25 instances are given in Table 7.

Table 8 reports the costs of tours output by the implementations as mul-
tiples of the Held-Karp bound for the corresponding problem. We see that
implementations B and/or C produced the best tours in 21 of the 25 bench-
mark instances. Implementation A was seen to outperform implementations

8

Table 5: Execution time in seconds required by the three implementations

Table 7: Execution times for benchmark problems

Problem Time Limit

atex8 2000
big702 3000
dc112 50
dc126 75
dc134 80
dc176 120
dc188 140
dc563 1500
dc849 4500
dc895 5500
dc932 7000
ftv100 50
ftv110 60

Problem Time Limit

ftv120 70
ftv130 80
ftv140 90
ftv150 100
ftv160 110
ftv170 120
kro124p 50
rbg323 1000
rbg358 1100
rbg403 1200
rbg443 1300
td100 1 50

the TS-SAG implementation of tabu search produces results for moderate
sized ATSP instances which are superior to conventional tabu search imple-
mentations for this problem.

5 Summary

In this paper, we suggest a tabu search implementation to solve asymmetric
traveling salesman problems (ATSPs). In our implementation, we �rst use
a cross entropy method based preprocessing algorithm to reduce the density
of the graph describing the problem instance, and to generate good starting
tours for tabu search to operate in a multi-start mode. We then use a tabu
search implementation specially designed to solve ATSPs de�ned on sparse
graphs.

We created three implementations, one without any of the enhancements

Table 8: Costs of tours output by the implementations as a multiple of
Held-Karp bound at the end of the pre-speci�ed execution time

Implementation
Instance Size A B C

atex8 600 5.51 5.25 5.05
big702 702 12.65 4.91 5.19
dc112 112 1.01 1.01 1.01
dc126 126 1.00 1.00 1.02
dc134 134 1.01 1.01 1.02
dc176 176 1.02 1.01 1.03
dc188 188 1.00 1.01 1.02
dc563 563 1.05 1.05 1.08
dc849 849 1.05 1.05 1.05
dc895 895 1.03 1.03 1.13
dc932 932 1.00 1.01 1.11
ftv100 100 2.65 1.90 1.90
ftv110 110 2.78 1.93 1.93
ftv120 120 2.67 2.16 2.16
ftv130 130 3.04 2.30 2.30
ftv140 140 3.20 2.42 2.52
ftv150 150 3.34 2.59 2.59
ftv160 160 3.45 2.78 2.68
ftv170 170 3.64 2.85 2.84
kro124p 124 1.34 1.25 1.25
rbg323 323 3.61 2.19 2.20
rbg358 358 859.84 2.72 2.78
rbg403 403 405.68 1.69 1.74
rbg443 443 367.65 1.74 1.79
td100 1 100 1.32 1.13 1.12

entropy method, followed by the TS-SAG tabu search implementation (see
Basu et al., 2008) specially designed for performing tabu search on ATSPs
de�ned on sparse graphs.

References

Applegate D, Bixby R, Chvatal V and Cook W (2006). The Traveling Sales-
man Problem: A Computational Study. Princeton University Press.

Basu S, Gajulapalli R and Ghosh D (2008). Implementing tabu serach to
exploit sparsity in atsp instances. Working Paper Series, Indian Institute
of Management Ahmedabad, 2008-10-02.

Basu S and Ghosh D (2008). A review of the tabu search literature on

11

traveling salesman problems. Working Paper Series, Indian Institute of
Management Ahmedabad, W.P. No. 2008-10-01.

Boer P, Kroese D, Mannor S and Rubinstein R (2005). A tutorial on the
cross-entropy method. Annals of Operations Research134: 19{67.

Chepuri K and Homem-de Mello T (2005). Solving the vehicle routing
problem with stochastic demands using the cross entropy method.Annals
of Operations Research134: 193{181.

Cirassela J, Johnson D, McGeoch L and Zhang W (2001). The asymmetric
traveling salesman problem: algorithms, instance generators, and tests.
In: Buchsbaum A and Snoeyink J (eds).Algorithm Engineering and Ex-
perimentation. Third International Workshop, ALENEX 2001, Lecture
Notes in Computer Science2153, pp 32{59. Springer-Verlag.

Fischetti M, Lodi A and Toth P (2002). Exact methods for asymmetric trav-
eling salesman problem. In: Gutin G and Punnen P (eds).The Traveling
Salesman Problem and Its Variations 4, pp 169{206. Kluwer Academic
Publisher: London.

Glover F and Laguna M (1998). Tabu Search. Kluwer Academic Publisher:
London.

Goossens J and Baruah S (2001). Multiprocessor preprocessing algorithms
for uniprocessor on-line scheduling. In:The 21th International Conference
on Distributed Computing Systems.

Held M and Karp R (1970). The traveling salesman problem and minimum
spanning trees.Operations Research18: 1138{1162.

Held M and Karp R (1971). The traveling salesman problem and minimum
spanning trees: Part II. Mathematical Programming 1: 6{25.

Johnson D, Gutin G, McGeoch L, Yeo A, Zhang W and Zverovich A (2002).
Experimental analysis of heuristics for the ATSP. In: Gutin G and Punnen
P (eds). The Traveling Salesman Problem and Its Variations10, pp 445{
488. Kluwer Academic Publishers: London.

Karp R (1972). Reducibility among combinatorial problems. Complexity of
Computer Computations, pp 85{103. Plenum Press.

Khumawala B (1975). An e�cient branch and bound algorithm for the
warehouse location problem.Management Science18: B718{B731.

Reinelt G (1991). TSPLIB { A traveling salesman problem library.

Rubinstein R (1997). Optimization of computer simulation models with rare
events. European Journal of Operational Research99: 89{112.

Rubinstein R (1999). The simulated entropy method for combinatorial and
continuous optimization. Methodology and Computing in Applied Proba-
bility 2: 127{190.

Rubinstein R (2001). Combinatorial Optimization, Cross-Entropy, Ants
and Rare Events. In: Uryasev S and Pardalos P M (eds).Stochastic
optimization: algorithms and applications, pp 445{488. Kluwer Academic
Publishers: London.

Toth P and Vigo D (2003). The granular tabu search and its application
to the vehicle-routing problem. INFORMS Journal on Computing 15:
333{346.

13

