

## On some selected issues in VLSI Interconnect Layouts in the nanometer range

Parthasarathi Dasgupta

 $e_{i}^{s} \bullet f he \bullet be_{i}^{s} he e_{i}^{s} e \bullet f \bullet - e_{i}^{s} e_{i}^{s} \bullet be_{i}^{s} e_{i}^{d} - u^{de} \bullet ge_{i}^{s} \bullet \bullet e_{i}^{s} a e_{i}^{s}, e_{i}^{s}$ 

e **a** a<sup>S</sup>. **b** ag e **b** ce a d<sup>S</sup> e **f** f<sup>S</sup> **b** ag e **b** ce a d<sup>S</sup> e **f** f<sup>S</sup> **c** a d a a<sup>S</sup> ca ed e **f** ag e **b** ce a d a a<sup>S</sup> **c** a d e **c** a d d e **c** a d d g ag **c** d **c** a **c** a d e **c** a d **c** a d

O A 2.  $( \mathfrak{g} A) > (L A) > ( \mathfrak{g} M) > \frac{(\mathfrak{g} M)}{1.5^{-1}}.$ 

## 5. CROSSTALK DRIVEN GLOBAL ROUT-ING

The constant of the formula of the

The CCG be is a edition of the cCG be is a constraint of the cons

Zacha  $a^{S_{e}}$ , "Ca• ca F  $a^{S_{a}}$  a d Ag  $h^{S_{s}}$  f S e e T ee<sup>S</sup> U f  $a^{S_{e}}$  O e a• Me  $a^{S_{e}}$ , Tech. Re . 02-22, De a  $a^{S_{e}}$  • f G  $a^{S_{e}}$  = Sce ce, U e  $f^{S_{e}}$  + f G e hage , 2002. [23] T. Sa a a, P. Gh sa, H. Raha a a d P. Da<sup>S</sup>g a,