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Continuous and strategyproof mechanisms �

Ranojoy Basuy1 and Conan Mukherjeez2

1Economics and Finance area, Indian Institute of Management Udaipur

2Economics group, Indian Institute of Management Calcutta

Abstract

We introduce a novel notion of continuity of mechanisms, and present a complete

characterization result which shows that: the class of VCG (Vickrey [26], Clarke [3],

Groves [6]) mechanisms is the only class of strategyproof mechanisms that satisfy

(weak) agent sovereignty, non-bossiness in decision, and continuity. We �nd that

e�cient mechanisms are actually a well-behaved subset of continuous strategyproof

mechanisms.

JEL classi�cation: C72; C78; D71; D63
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Ashlagi and Serizawa [1], rules out positive transfers, and so, excludes a subset of VCG

mechanisms. Further, Ashlagi and Serizawa [1] presents a characterization of decision

e�ciency that is independent of the one presented in this paper. They show that every

strategyproof mechanism satisfying anonymity in welfare and individual rationality must

be decision e�cient when no positive transfers can ever be made.3 However, in their paper,

the imposition of anonymity in welfare implied that (i) the transfer functions would be

independent of agent identities, and (ii) the transfer functions of each agent would be

symmetric. In contrast, the present paper uses the novel continuity condition, which

ensures that any well behaved strategyproof mechanism satisfying the aforementioned

properties - must be decision e�cient (even when positive transfers are allowed). This

result allows us to completely characterize the full class of VCG mechanisms (including

those not satisfying (i) and (ii)) without using decision e�ciency.

To the best of our knowledge, there is no other paper that characterizes the complete

class of VCG mechanisms without use of the restriction of decision e�ciency.

3 Model

Consider an assignment problem where a single indivisible object must be allotted to any

one member from the agent set



v�i := (v1; : : : ; vi�1; vi+1; : : : ; vn), v�S := (vi)i2NnS and vS := (vi)i2S. Also, de�ne for all

x � 0, and all t 2 f1; : : : ; ng, �xt := (x; x; x; : : : ; x) 2 Rt
+. Finally, for any � > 0, any

t 2 N, and any y 2 Rt
+; let N�(y) := fz 2 Rt

+j� > jjy � zjjg where jj:jj denotes the

Euclidean norm.

We begin by de�ning the class of VCG mechanisms in the current setting.

De�nition 1 A mechanism �V = (dV ; �V ) is a VCG mechanism if and only if for all

i 2 N , and all v 2 RN
+ ,

� dVi (v) = 1 =) vi � vj; 8 j 6= i.

� There exists a function hi : RNnfig 7! R such that

�Vi (v) =



(d) Non-bossiness in decision For any i 2 N , any v 2 RN
+ , and any x � 0,

di(v) = di(x; v�i) =) 8 j 6= i; dj(v) = dj(x; v�i):

The condition (a) above is a continuity condition. It requires that for all convergent

sequences of pro�les, if (i) some agent i gets the object at all member pro�les of the

sequence, and (ii) some other agent j 6= i gets the object at the limit pro�le; then the

transfers of i and j at the limit pro�le should make them indi�erent between winning and

losing the object.6 The condition (b) is a boundary condition that rules out any agent

getting the object by reporting a zero valuation. Note that this idea, in itself, represents

a desirable property which requires no agent should get the object when she reports no

desire for it. However, we impose a weaker restriction, requiring that no agent get the

object by reporting zero valuation only when there is another agent who reports a positive

valuation.

The condition (c) of `weak agent sovereignty' presents the idea that each agent must

always be able to impact the allotment process in her favour, by reporting a suitable

value, should she �nd it preferable to do so. This restriction also been used in other

mechanism design settings by Lavi, Mualem and Nisan [10] (who refer to this restriction as

`player decisiveness'), Moulin and Shenker [15] and Marchant and Mishra [12].7 Finally,

the condition (d) presents a version of non-bossiness which requires that no agent be

able to change any other agent's allotment decision, without changing her own decision.

As argued by Thomson [25], non-bossiness of decision, in company of strategyproofness,

embodies strategic restraints to collusive practices where agents form groups to misreport

in a manner that changes the allotment decision to bene�t one member of the group while

not making any other member worse o�. This condition has been used in other mechanism

design settings by Nath and Sen [18] and Mishra and Quadir [13].

In this paper, we look for mechanisms in � that are immune to strategic manipulation

6The same implication must hold for any agent who does not get the object at any member pro�le of
the convergent sequence of pro�les, but gets the object at the limit pro�le.

7Note that the restriction (b) would no longer be needed for our results if we use a stronger version
of agent sovereignty that requires that for all i and all v�i 2 RNnfig, there exist xv�i ; yv�i � 0 such that
di(x

v�i ; v�i) 6= di(y
v�i ; v�i).
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in reporting. In particular, we use the popular strategic axiom of strategyproofness, which

eliminates any incentive to misreport on an individual level. It is de�ned as follows.

De�nition 3 A mechanism � = (d; �) satis�es strategyproofness (SP) if 8 i 2 N , 8v; v0 2

RN
+ such that v�i = v0�i,

u(di(v); �i(v); vi) � u(di(v
0); �i(v

0); vi)

Thus, a strategyproof mechanism guarantees that revealing the true valuation is a weakly

dominant strategy for each agent in the simultaneous move game that ensues from the

mechanism. The purpose of this paper is to show that the class mechanisms in � that

satisfy SP is same asMV CG.

4 Results

We start by stating a well-known characterization of strategyproof mechanisms.

Result 1 A mechanism � = (d; �) satis�es SP if and only if 8 i 2 N and 8 v 2 RN
+ ,

there exist real valued functions K�
i : RNnfig

+ 7! R and T �i : RNnfig
+ 7! R [ f1g such that

di(v) =

8><>: 1 if vi > T �i (v�i)

0 if vi < T �i (v�i)
and �i(v) =

8><>: K�
i (v�i)� T �i (v�i) if di(v) = 1

K�
i (v�i) if di(v) = 0

Proof: The result follows from Proposition 9.27 in Nisan [19] and Lemma 1 in Mukher-

jee [17]. �

Note that Result 1 allows for arbitrary tie-breaking in allocation decision of the object

at any pro�le v 2 RN
+ such that there exists an agent i 2 N with vi = T �i (vj). In this

paper, without loss of generality, we assume a tie-breaking rule in favour of agent 1 such

that: for any pro�le v 2 RN
+ ,

v1 = T �1 (v�1) =) d1(v) = 1:

Thus, for any agent i 6= 1, this tie breaking rule does not allocate the object to i at any
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valuation pro�le where her reported value equals her threshold. Note that, our assumption

of object being allocated at all pro�les, in conjunction with any tie-breaking rule, requires

threshold functions to be su�ciently well behaved so that whenever vi = T �i (v�i); i 6= 1,

there exists a j 6= i such that vj > T �j (v�j).

We begin by presenting the following theorem which plays an important role in es-

tablishing our proof. It states that for any strategyproof mechanism in �, the threshold

functions fT �i (:)gi2N of Result 1 must be continuous, and have �nite non-negative image

at all points in Rn�1
+ .

Theorem 1 For any mechanism � 2 � that satis�es SP,

1. T �i (z) 2 [0;1) for all z 2 RNnfig
+ , and all i 2 N .

2. limv�i!z T
�(v�i) = T �i (z) for all z 2 RNnfig

+ ; and all i 2 N:

Proof: Fix any mechanism � = (d; �) 2 �. Fix any i and any v�i 2 RNnfig
+ such that

v�i 6= �0n�1. If T �i (v�i) < 0 then, by Result 1, di(0; v�i) = 1 which contradicts condition

(b) of De�nition 2. Also, if T �i (v�i) = 1, then di(x; v�i) = 0 for all x � 0 which

contradicts condition (c) of de�nition 2. Now consider the point �0n�1. Note that arguing

as above we can show that condition (c) implies T �i (�0n�1) <1. Consider the possibility

that T �i (�0n�1) < 0 which implies that di(�0
n) = 1. Now, by condition (b), di(0; v�i) = 0

whenever v�i >> �0n�1. And so, for any sequence of pro�les fvkg that converges to �0n,

such that for all k, vki = 0 and vk�i >> �0n�1; we have di(v
k) = 0 but di(�0

n) = 1, and so,

condition (a) of De�nition 2 implies that 0 � T �i (�0n�1) = 0,



1, di(v
t) = 0. Further, by construction, fvtg converges to v� where v�i = T �i



Now, we present the main result of this paper which states that the only strategyproof

mechanisms in � are the VCG mechanisms.

Theorem 3 MV CG is the unique class of mechanisms in � that satisfy SP.

Proof: To prove this result, we need to show that any mechanism � 2 � satis�es SP if

and only if � = �V . The proof of necessity follows from Result 1 and Theorem 2 above.

To see the su�ciency, we simply need to show that �V 2 �.8 It is easy to see that for �V :

(i) the object is given, at all reported pro�les, to any one of the highest bidders implying

that �V satis�es conditions (b) & (d); and (ii) every agent can report a value greater that

all her competitors' reported values to get the object, implying than �V satis�es condition

(c). To see that �V also satis�es the continuity condition (a), consider any convergent

sequence of pro�les fvtg with limit at �v � 0, such that dV (vt), and hence, w(vt) remains

unchanged with t. Hence, we can de�ne an agent �w 2 N such that w(vt) = �w for all

t 2 N. Therefore, by de�nition of �V , for all t, vt�w � vtj for all



�ve examples of mechanisms which fail to satisfy one of these axioms, while satisfying all

other properties. These examples are as follows:

: NBD Consider a setting where N = f1; 2; 3g, and a mechanism of the kind described

in Result 1 such that: (i) for any v 2 RN
+ ,

T1(v2; v3) = v2 + v3; T2(v1; v3) = maxfv1 � v3; v3g; T3(v1; v2) = maxfv1 � v2; v2g;

(ii) ties are broken in favour of agent 3, and (iii) losers receive zero transfers. Note

that d(9; 5; 3) = (1; 0; 0), but d(9; 5; 4:5) = (0; 1; 0); implying that this mechanism

does not satisfy NBD.

It is easy to see that this mechanism satis�es C, R, SP, and WAS. Further, note

that whenever v1 < T1(v�1), the higher bidder i 2 f1; 2g gets the object, and

so, this mechanism allocates the object at all pro�les. Finally, consider sequence of

pro�les (vk)! �v such that for all k, (without loss of generality) d2(vk) = 1. Further,

suppose that d2(�v) = 0. Then, by construction, vk2 � T2(vk�2) for all k, which implies

that �v2 = maxf�v1 � �v3; �v3g, further implying that u(1; �2(�v); �v2) = u(0; �2(�v); �v2).

: C Consider a setting where N = f1; 2g, and a mechanism of the kind described in

Result 1 such that for all v 2 RN
+ :

T1(v2) =

8><>: 2v2 v2 � 50

v2 otherwise
and T2(v1) =

8>>>><>>>>:
v1 v1 < 50

50 v1 2 [50; 100)

v1

2
v1 � 100

and ties are broken in favour of agent 1 with losers receiving zero transfers. It is

easy to see by Theorem 1 that this mechanism violates C. It is also easy to check

that the object is allocated at all pro�les, and hence, this mechanism satis�es NBD.

Finally, one can easily check that this mechanism satis�es R, SP and WAS.

: R Consider a setting where N = f1; 2g, and a mechanism of the kind described in
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Result 1 such that for all v 2 RN
+ :

T1(v2) = v2 � 5 and T1(v2) = v1 + 5

with ties broken arbitrarily and losers receiving zero transfers. It is easy to see that

agent 1 is allocated an object at the pro�le (0; 1), which violates R.

Further, it is easy to see that this mechanism allocates the object at all pro�les, and

hence, satis�es NBD, SP and WAS. Finally, to see that this mechanism satis�es C,

consider sequence of pro�les (vk)! �v such that for all k





satisfy non-bossiness in decision and agent sovereignty. These results provide new con-

nections between continuity, strategyproofness, and e�ciency in a standard mechanism

design setting.

It would be di�cult, but interesting, to investigate whether the presented results

continue to hold for multiple identical indivisible objects, or heterogeneous indivisible

objects. We leave these questions for future research.

7 Appendix

7.1 Proof of Theorem 2

The proof relies on the following four lemmata.

Lemma 1 For any mechanism � = (d; �) 2 � that satis�es SP,

1. For all v 2 RN
+ and any i 2 N , vi > T �i (v�i) =) fvj < T �j (v�j);8 j 6= ig.

2. For all v 2 RN
+ and any i 2 N ,

vi = T �i (v�i) =)
�
9 j 6= i such that vj = T �j (v�j) and vk � T �k (v�k);8 k 6= i; j

	
:

Proof: Fix any mechanism � = (d; �) 2 � that satis�es SP, and any v 2 RN
+ . If there

exists i 6= j 2 N such that vi > T �i (v�i) and vj = T �j (v�j), then by Result 1, for all

k 2 N n fi; jg, vk � T �k (v�k). Suppose, without loss of generality, that for all k 6= i; j,

vk < T �k (v�k).
9 Now, by continuity of the threshold functions (established by Theorem

1), for any � 2 (0; vi � T �i (v�i)), there exists ��i > 0 such that for all z 2 RNnfig
+ with

jjv�i � zjj < ��i , T
�
i (z) < T �i (v�i) + � < vi. Similarly, for all k 6= i; j, there exists

�k > 0 such that for all z 2 RNnfkg
+ with jjv�k � zjj < �k, vk < T �k (v�k) � �k < T �k (z).

Hence, de�ning �� := min f��i ; f�kgk 6=i;jg (it is well de�ned as the number of agents is

9The same arguments that follow would work if there is any other agent l 6= i; j such that vl = Tl(v�l).
The only di�erence that would arise would be that ~� would now be de�ned over all agents k 6= i; j; l.
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�nite), we can infer that there exists a � 2 (0; ��) such that vi > T �i (vj + �; v�fi;jg), and

vk < T �k (vj + �; v�fj;kg); 8 k 6= i; j. Now, since � > 0, by Result 1, di(vj + �; v�j) =

dj(vj + �; v�j) = 1 implying a contradiction to single indivisible object setting. Thus,

condition (1) follows.

To establish condition (2) consider the possibility that there exists an i 2 N and v 2 RN
+

such that vi = T �i (v�i), and vj < T �j (v�j) for all j 6= i. Arguing as above, there exists

an � > 0 such that vj < T �j (vi � �; v�fi;jg) for all j 6= i. By Result 1, it implies that

dt(vi � �; v�i) = 0 for all t 2 N , which contradicts our supposition that the object must

be allocated at all reported pro�les. Hence, the condition (2) follows. �

Lemma 2 If a mechanism � = (d; �) 2 � satis�es SP, then:

1. for any v 2 RN
+ and any i 2 N , T �i (v�i) is non-decreasing for any change in

direction of each unit vector.10

2. for any x � 0, any i 2 N , and any v 2 Rn
+ such that v�i = �xn�1 and vi = T �i (�xn�1),

vj = T �j (v�j);8 j 6= i:

Proof: Fix any mechanism � = (d; �) 2 � that satis�es SP, any i 6= j 2 N and any

v�fi;jg 2 RNnfi;jg
+ .11 Say there exists 0 � v1

j < v2
j such that T

�
i (v1

j ; v�fi;jg) > T �i (v2
j ; v�fi;jg).

Fix a � 2 (T �i (v2
j ; v�fi;jg); T

�
i (v1

j ; v�fi;jg)), and consider two pro�les v; v0 2 RN
+ such that

vi = v0i = �, v�i = (v2
j ; v�fi;jg), and v0�i = (v1

j ; v�fi;jg). By Result 1, di(v) = 1 =)

dj(v) = 0, and so, dj(v
0) = 0 as v1

j < v2
j . But, by construction, di(v

0) = 0 which implies

a contradiction to (d). Hence, the condition (1) follows.

To establish condition (2), �x any x � 0, any pro�le v and any agent i such that vi =

T �i (�xn�1) and v�i = �xn�1. By Lemma 1, there exists an agent k 6= i such that x =

10Unit vectors are the vectors e1; : : : ; en�1 2 Rn�1
+ such that each t = 1; : : : ; n � 1 et

l =�
1 if t = l
0 otherwise
11If jN j = 2, then the result would follow trivially from Lemma 1.
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vk = T �k (T �i (v�i); v�fi;kg) = T �k (T �i (�xn�1); �xn�2). Without loss of generality, suppose that

di(v) = 1.12 Now suppose there exists another agent j 6= i; k such that vj < T �j (v�j)

implying that x = vj < T �j (T �i (�xn�1); �xn�2). Therefore, by (d) and condition (1) proved

above, vi = T �i (x + �; �xn�2) if x + � < T �j (T �i (�xn�1); �xn�2). Therefore, by Lemma 1 and

Result 1, we get that:

T�i (x+ �; �xn�2)� T�i (�xn�1) =

8><>: 0 for all 0 � � < T�j (T�i (�xn�1); �xn�2)� x

positive for all � > T�j (T�i (�xn�1); �xn�2)� x
(1)

Note that by Result 1, T �i (:) values must not depend on the value reported agent i. On

the other hand, equation must hold true for all values of x � 0. Now, consider the

possibility that T �j (:) is independent of i's reported value. This would imply that, at any

pro�le v̂ where v̂j > T �j (�0n�2), v̂i > T �i (v̂j; �0
n�2), and v̂l = 0 for all l 6= i; j; the decision

values di(v̂) = dj(v̂) = 1, which contradicts a single object being allocated. Therefore,

(1) implies that Ti(�xn�1) is a constant for all values of x � 0, and all i 2 N . In that

case, we can de�ne n non-negative �nite real numbers K1; K2; : : : ; Kn such that for any

l 2 N , Kl = T �l (�xn�1);8 x � 0. Now, given the �nite number of agents, we can choose a

K� > maxl2N Kl, and consider the pro�le of reports v� where every agent i reports the

same value K�. By construction, Ki � T �i (v�i) for all i, and so, by Result 1, di(v
�) = 1

for all i which again contradicts the single object setting.

Hence, we can infer that, for all j 6= i; k, vj = T �j (T �i (�xn�1); �xn�2) and so, the condition

(2) follows. �

Lemma 3 If a mechanism � = (d; �) 2 � satis�es SP then for all x � 0 and all i 2 N ,

T �i (�xn�1) = x

Proof: Fix any mechanism � = (d; �) 2 � that satis�es SP. Fix any value x � 0 and any

agent i 2 N . Consider the two possibilities: (i) T �i (�xn�1) < x, and (ii) T �i (�xn�1) > x.

12The only other possibility is that dk(v) = 1. In that case too, the same arguments would lead to the
same conclusions.
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Consider the possibility (i). Applying condition (1) of Lemma 1 for pro�le �xn, (A) T �l (�xn�1) >

x for all l 6= i. Now �x any j 6= k 6= i. Further, applying Lemma 2 for pro�les

v̂ and ~v, where (v̂i; v̂�i) = (T �i (�xn�1); �xn�1) and (~vk; ~v�k) = (T �k (�xn�1); �xn�1), respec-

tively; we get that (B) x = T �j (v̂�j) = T �j (~v�j). Now, by Lemma 2, (A) and (B),

x = T �j (v̂�j) � T �j (�xn�1) � T �j (~v�j) = x, which establishes that T �j (�xn�1) = x, which

contradicts (A). Hence, possibility (i) cannot hold.

For possibility (ii), consider the pro�le �xn, and note that, by Result 1, di(�xn) = 0. So,

there exists a j 6= i such that dj(�xn) = 1. Now, if x > T �j (�xn�1), then arguing as above,

we can show that there exists some l 6= j such that x = T �l (�xn�1), which would contradict

Lemma 1. Now if x = T �j (�xn�1), then by applying Lemma 2 to the pro�le �xn, we get that

x = T �i (�xn�1), which contradicts the possibility (ii). Hence, the result follows. �

Lemma 4 If a mechanism � = (d; �) 2 � satis�es SP then for all i 2 N , and for all

v 2 RN
+ ,

T �i (v�i) = max
j 6=i

vj

Proof: Fix any mechanism � = (d; �) 2 � that satis�es SP. Also, �x any agent i 2 N ,

and any z 2 Rn�1. Without loss of generality, assume that z = (z1; z2; : : : ; zn�1) where

zk � zk+1 for all k = 1; : : : ; n� 2. Therefore, we need to show that T �i (z) = z1. For the

sake of notational simplicity, let � := z1.

Now, �x any � > 0 and consider the pro�les v� and v�� such that v�i = � + �; v��i = ��n�1

and v��i = � � �; v���i = ��n�1. By Lemma 3, T �i (��n�1) = �, and so, by construction,

v�i > T �i (��n�1) and v��i < T �i (��n�1). Now, by condition (1) of Lemma 2 and construction

of �, T �i (��n�1) � T �i (��n�2; zn) � : : : � T �i (z) implying that v�i > T �i (z). Arguing similarly

for pro�le v��, we get that v��i < T �i (z). Thus, we get that for all � > 0,

v��i < T �i (z) < v�i

which implies that T �i (z) = � = z1. Hence the result follows. �

It easy to see that the threshold function speci�ed in Lemma 4 requires the object to be

allotted to the highest bidders at all valuation pro�les, and hence, describes an e�cient
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mechanism.
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