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Abstract

This paper completely characterizes Vickrey auction with reserve price [VARP], in

single and multiple objects settings, using normative and strategic axioms. In particular,

it provides a topological interpretation of reserve price as thein�mum of a particular set

of non-negative real numbers.

In the single object case, we �nd that a strategyproof mechanism satis�es anonymity

in welfare, agent sovereignty and non-bossiness in decision if and only if it has a VARP

allocation rule. To extend this result to the multiple objects setting, we introduce a con-

tinuity condition and show that any continuous and strategyproof mechanism satis�es the

aforementioned properties (and a mild regularity condition) if and only if it has a VARP

allocation rule.

JEL classi�cation : C72; C78; D71; D63

Keywords: Anonymity in welfare, agent sovereignty, non-bossiness in decision, continuity,

strategyproof mechanism

1 Introduction

It is well known that reserve pricing at auctions is an important method of ensuring that

the seller revenue is not too low (Ausubel and Cramton [3]). Vickrey auctions, on other

hand, ensure that the objects are allocated e�ciently and that agents have no incentive

to misreport irrespective of what other agents are reporting. Therefore, Vickrey auction

with reserve price [VARP]1 is a useful mechanism for accomplishing both objectives of

e�cient allocation of objects and avoidance of low seller revenues. It is, therefore, no

� Email: ranojoy.basu@iimu.ac.in
yEmail: conanmukherjee@gmail.com
1Vickrey auction with reserve price is a mechanism with a special allocation rule where objects are

allocated only to agents whose bids are not less than the reserve price. Further, winners of object pay
the maximum of the reserve price and the greatest losing bid as price and non-winners pay nothing.
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surprise that auctioneers have been recorded to be using VARP as early as 1897.2 While

revenue generation properties of VARP have been well documented over time, there is a

dearth of literature on ethical properties of VARP. This is in contrast to a large literature

providing normative characterizations of Vickrey auction without reserve prices.3 This

paper attempts to �ll this gap by completely characterizing VARP, both in single and

multiple objects settings (with unit demand), using normative axioms.

We present the idea of ethical mechanisms by invoking two popular notions of fairness:

anonymity in welfare and agent sovereignty.4 A mechanism is said to satisfy anonymity

in welfare if utility levels of any two agents get interchanged, when their valuations are

interchanged with all other agents' valuations remaining unchanged. A mechanism is

said to satisfy agent sovereignty if it provides each agent with some opportunity to get

an object, irrespective of what the other agents are reporting.

Further, we describe the idea of mechanisms being immune to manipulation by in-

voking the concept ofstrategyproofness. A mechanism is said to be strategyproof if

truth-telling is a weakly dominant strategy for all agents in the direct revelation game

induced by it.

We use an additional axiom of non-bossiness which requires that no agent be able

to a�ect the allocation decision of another agent without a�ecting her own allocation

decision. Since this is a di�erent version of the conventional non-bossiness axiom of

Satterthwaite and Sonnenschein [26], we call itnon-bossiness in decision.5 As argued

by Thomson [29], non-bossiness of decision, in company of strategyproofness, embodies

strategic restrictions that discourage collusive practices where agents form groups to

misreport in a manner that changes the allotment decision to bene�t one member of the

group while not making any other member worse o�.

In the single object case, we show that a strategyproof mechanism satis�es anonymity,

agent sovereignty and non-bossiness in decision only if it has an allocation rule same as

that of a VARP. 6 Then we completely characterize the class of mechanisms that satisfy



anonymity, agent sovereignty, strategyproofness and non-bossiness in decision. Any mech-

anism in this class satis�es a mildzero-utility condition (requiring that any agent with

zero valuation for the object should get zero utility by participating in the mechanism),

if and only if it is a VARP.

Unfortunately, these characterizations fail to hold in the multiple homogeneous objects

case straightaway. That is because with multiple objects, any number of objects may be

withheld by the planner leading to a proliferation of the number of possible decisions

at any valuation pro�le. For example, when there are three objects to be allocated; at

any valuation pro�le, the planner must choose from four possible decisions of allocating

k 2 f 0; 1; 2; 3g objects. In contrast, with a single object to allocate; at any valuation

pro�le, the planner has only two possible choices of either allocating the object or not.

To address the subsequent technical complexities, we introduce a continuity condition,

and show that any continuous mechanism satis�es anonymity, agent sovereignty, non-

bossiness in decision, strategyproofness and zero-utility (and a mild regularity condition);

if and only if it is a VARP. Thus, our paper completely characterizes the class of VARP

in both single object andmultiple objects settings.

1.1 Relation to literature

Perhaps the most popular paper on reserve pricing is Myerson [19]. Myerson [19], in an

independent private value setting for a single indivisible object, identi�es a particular

VARP as oneof the (Bayes-Nash incentive compatible) revenue maximizing mechanisms

under the assumptions of: (i) symmetric bidders, (ii) distribution of valuations satisfying

a regularity condition and (iii) the planner knowing this distribution with certainty. Fur-

ther, Myerson [19] obtains a revenue maximizing mechanism involving di�erent reserve

prices for di�erent agents if assumption (i) is violated. In contrast, for the single object

case, our paper uses the same independent private value setting, without making the

assumption (i) or any other distributional assumption, to show that any mechanism is an

ethical (anonymous, agent sovereign and non-bossy) and strategyproof mechanism, if and

only if it is a VARP. Thus, our result provides an interpretation of VARP (and hence,

use of singleidentical reserve price across all bidders) even when bidder valuations are

not symmetrically distributed. Additionally, unlike any other paper that we are aware

of, our paper presents a characterization of VARP for multiple objects.

Some other papers, particularly relevant to our analysis are, Mishra and Quadir [14],

Sakai [23], Klaus and Nichifor [10], and Tierney [30]. Mishra and Quadir [14] focus only

on the single object allocation problem with money, and characterize the class of strat-



egyproof and non-bossy (in decision) allocation rules. They show that for any reported

valuation: the utility vector generated by the chosen allocation must be consistent to

maximization of some m̀onotone



an implication of failing to meet thesinglereserve price for the real objects.9 Further, the

mechanisms characterized by Tierney [30], when reduced to single object setting entail

a separate (possibly positive) reserve price for getting no object, which is contrary to

our �ndings. Hence, our results are of independent interest to theirs. Finally, instead of

treating reserve prices as a parameter, we present a topological interpretation of reserve

price where it gets endogenously determined as an in�mum of a special set of real numbers

that follow from our axioms.

From a purely strategic perspective (without any normative axiomatic structure), a

few notable recent works on reserve prices and their welfare and revenue e�ects are: Hu,

Matthews and Zu [8], Kotowski [11], and Sano [25]. Unlike our paper, all these papers

adopt the strategic perspective of Bayes' Nash incentive compatibility, under some chosen

prior distribution of private informations.

The paper proceeds as follows. Section 2 presents the model and de�nitions. Section 3

presents the results on single and multiple objects. Section 4 discusses the independence

of axio-253utivxio9





As mentioned earlier, NBD embodies a strategic barrier to collusive practices where agents

form groups to misreport in a manner that changes the allotment decision to bene�t any

one member of the group while not making any other member worse o�.11

The following two de�nitions pertain to two di�erent notions of fairness. They de-

scribe ethically desirable behaviour that a mechanism should exhibit in an idealized state

of nature where there is no private information (that is, planner knows every agent's

true valuation). The �rst de�nition states the fairness concept of anonymity in welfare

which requires that utility derived from an allocation by any agent be independent of her

identity. The second de�nition states the fairness idea that each agent should have an

opportunity to get an object, irrespective of what the other agents are reporting.12

De�nition 4. A mechanism (dm ; � m ) satis�es anonymity in welfare(AN) if for all i 2 N ,

all v 2 RN
+ and all bijections � : N 7! N ,

u(di (v); � i (v); vi ) = u(d�i (�v ); � �i (�v ); �v �i )

where�v :=
�
v� � 1 (k)

� n

k=1
.

De�nition 5. A mechanism (dm ; � m ) satis�es agent sovereignty(AS) if for all i 2 N and

all v 2 RN
+ , there existsv0

i 2 R+ such that

dm
i (v0

i ; v� i ) = 1

Finally, the following axiom implies the fairness perception that if an agent has zero

valuation for the object, then the agent must not get a positive or negative utility by

merely participating in the mechanism.

De�nition 6. A mechanism (dm ; � m ) satis�es zero-utility if for all i 2 N and all v� i 2

RN nf i g
+ ,

u(dm
i (0; v� i ); � m

i (0; v� i ); 0) = 0 :

Note that for our single object setting, this zero-utility condition is logically equivalent

to the non-imposition condition of Sakai [23].13

11See Thomson [29]. Also to see the kind of undesirable mechanisms that NBD excludes, consider
the following example. For any pro�le v: (i) if there exists an agent i such that vi 2 [0; b(1)) and vi is
an irrational nd [(i)]TJ/F15 11.9552 Tfin.9552 Tfd82 Tfd82 l0(all)2 irration7(n)28(d/F24 7T
/Fu5 1.495 Td [(is)]TTd [(i)]TJ/F55 9.9626 6.783 .9552 Tf 39.913 0 T+)]TJ/F15 11.95525 1.49585 1u d all



3 Main results

For the sake of simplicity of notation, henceforth, we suppress the superscriptm while

describing a mechanism (dm ; � m ) whenever the number of objects being allocated is clear

from the ambient context.

We begin by noting the following well known result which establishes that the deci-

sion rule implicit in any strategyproof mechanism must be non-decreasing in one's own

reported value.14 In particular, for any agent i and any pro�le of valuations v� i , there

must exist a threshold priceTi (v� i ) such that: i gets an object ifvi strictly exceedsTi (v� i )

and fails to get an object ifvi is strictly less thanTi (v� i ). Further, if a strategyproof

mechanism satis�es AS, then these threshold prices must be �nite. Finally, SP and AS

imply that the transfer of agent i when getting the object, must exceed that when not

getting the object, by Ti (v� i ).15

Fact 1. Any mechanism (d; � ) satis�es SP and AS, if and only if8 i 2 N and 8 v� i 2

RN nf i g
+ , there exist real valued functionsK i : RN nf i g

+ 7! R and Ti : RN nf i g
+ 7! R such that

di (v



Theorem 1. A mechanism (d; � ) satis�es properties AN, AS, NBD and SPonly if 9 r � 0

such that for all i 2 N and all v 2 RN
+ ,

di (v) =

(
1 if vi > maxf v� i (1); rg

0 if vi < maxf v� i (1); rg

Proof: We accomplish this proof in three stages.17 First, in Lemma 2 of Appendix, we

establish existence of a real� which is well de�ned with respect to a set of valuations

where at least one object is allocated. Then, in subsection 7.2 of Appendix, we show that

for all v and all i , (i) vi < maxf v� i (1); � g implies di (v) = 0, and (ii) vi > maxf v� i (1); � g

implies that di (v) = 1. This allows us to establish existence of a reserve pricer := � such

that Ti (v� i ) = max f v� i (1); rg for all v and all i .

Remark 2. Kazamura, Mishra and Serizawa [9], henceforth, referred to as KMS, show

that any mechanism satisfying AN, SP and `loser payment independence' (requiring that

loser at any pro�le pay the same amount irrespective of her preference for the object),

must be anadjusted Vickrey auction with a variable reserve price. Theorem 1 comple-

ments this result by showing that: in a quasilinear setting, any mechanism satisfying AN,

AS, SP and NBD, must have an allocation rule same as that of a VARP (that is, uses a

common reserve price).

Note that, for the single object case, our tie breaking rule implies that for anyv with

vi � Ti (v� i ); 8i 2 N , the object is allocated to the top most agent inY(v) according to the

order 1� 2 � : : : � n. Therefore, Theorem 1 provides a novel topological interpretation

to the reserve price value of a VARP. That is, it establishes that the reserve price used

in a VARP mechanism, must also be thein�mum of a setS consisting of non-negative

real numbers satisfying the following property: if all agents bid the same number fromS,

then at least one object is allocated. As we shall see later, this interpretation continues

to hold (in Proposition 3) when there are more than one objects to allocate. This idea is

expressed in the following corollary.

Corollary 1. For any mechanism (d1r
; � 1r

) 2 � 1,

r = inf f x � 0 : �xn =2 B 1
0g

Proof: It is easy to that any VARP satis�es AN, AS, NBD, and SP. Hence, from proof

of Theorem 1, the result follows.

Next, we de�ne a special class of mechanisms that employ uniform reserve prices in

their allocation and transfer rules.
17See Appendix for full details.
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De�nition 7. Let M 1 be the class of mechanisms (d; � ) such that for all i 2 N and all

v 2 RN
+ ,

� di (v) =

(
1 if vi > maxf v� i (1); rg

0 if vi < maxf v� i (1); rg

� � i (v) =

(
K (v� i ) � maxf v� i (1); rg if dr

i (v) = 1

K (v� i ) if dr
i (v) = 0

whereK : Rn� 1
+ 7! R is a symmetric function.18

Thus, M 1 is a special class of mechanisms with the VARP allocation rule. It contains an

interesting sub-class of mechanisms with this allocation rule but not the VARP transfer

rule. This is the class ofmaxmed mechanisms introduced by Sprumont [27]. These

mechanisms belong toM 1 and can be obtained by setting

K (v� i ) = med
�

0; v� i (1) � r;
r

n � 1

�
; 8 v 2 Rn

+ ; 8 i 2 N;

where for any three real numbersx; y; z, medf x; y; zg denotes the median on the three

numbers.

The following theorem completely characterizesM 1.

Theorem 2. Any mechanism (d; � ) satis�es AN, AS, NBD and SPif and only if (d; � ) 2

M 1.

Proof: See Appendix.

Note that all mechanisms inM 1 which have a specialK (:) function such that K (z) = 0

for all z 2 Rn� 1
+ , are VARP. That is, the class of VARP mechanisms for single object; �1

is a subset ofM 1, i.e., � 1 � M 1. We use this relation to obtain the following corollary

which completely characterizes �.

Corollary 2. A mechanism (d; � ) satis�es AN, AS, NBD, SP and zero-utility if and only

if (d; � ) 2 � 1.

Proof: The proof of su�ciency is easy to check. To see the necessity, �x anyi 2 N and

any v� i 2 Rn� 1
+ . Consider the pro�le (0; v� i ). From Theorem 1 and zero-utility condition,

it follows that ui (di (0; v� i ); � i (0; v� i ); 0) = K (v� i ) = 0. Hence, the result follows.

Remark 3. Corollary 2 also follows from KMS. As mentioned earlier, they show in this

discussion paper that in a single object setting with general (possibly non-quasilinear)

18A function of k 2 N variables is said to besymmetric if the function value at any k-tuple of arguments
is the same as the function value at any permutation of thatk-tuple.
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preferences, any mechanism satis�es AN, SP and loser payment independence, if and

only if it is an adjusted Vickrey auction with a variable reserve price. In our setting: (i)

SP and zero-utility condition imply the KMS axiom of loser payment independence, (ii)

NBD rules out Vickrey mechanisms where the reserve price may depend on preference of

other agents. Thus, their result implies our Corollary 2. Finally, dropping AS from the

statement of Corollary 2 would lead to an additional trivial mechanism that never gives

out the object and charges zero transfers.19

3.2 Multiple homogeneous objects: m > 1

In this section we study the case where number of objects/copiesm can take any integer

value from 2 to n � 1. Ideally, the results in single object case should translate directly

to the multiple homogeneous objects (with unit demand) setting. However, that is not

the case. The reason for this are the following two complications that arise out of the

multiple objects setting.

The �rst complication is that, at any pro�le, it no longer follows from any one agent

getting an object, that other agents get no objects. Thus, the inherent externality of

the single object setting, becomes very weak whenm > 1. The second complication is



other hand, the regularity of a mechanism requires that at any valuation pro�le: if no

objects are allocated whenm � 2 copies are available, then no objects must be allocated

when m � 1 copies are available. This property rules out strange mechanisms where

abundance of objects leads to scarcity in allocations.21

The following theorem states that any continuous regular mechanism satisfying AN,

AS, NBD and SP, must have an allocation rule same as that of a VARP (form objects).

That is, any such mechanism must have an associated reserve price that iscommonacross

all agents.

Theorem 3. A continuous regular mechanism (d; � ) satis�es properties AN, AS, NBD

and SPonly if 9 r � 0 such that for all i 2 N and all v 2 RN
+ ,

di (v) =

(
1 if vi > maxf v� i (m); rg

0 if vi < maxf v� i (m); rg

Proof:



Proof: It is easy to check that any VARP mechanism is continuous and satis�es AN,

AS, NBD, SP. Hence, from proof of Theorem 3, the result follows.

Now, as in the single object case, we de�ne special class of mechanismsM m , which

employ reserve prices in their allocation ofm > 1 objects and corresponding transfer

rules.

De�nition 10. Let M m be the class of mechanisms (d; � ) such that for all i 2 N and

all v 2 RN
+ ,

� di (v) =

(
1 if vi > maxf v� i (m); rg

0 if vi < maxf v� i (m); rg

� � i (v) =

(
K (v� i ) � maxf v� i (m); rg if di (v) = 1

K (v� i ) if di (v) = 0

whereK : Rn� 1
+ 7! R is a symmetric function.

Similar to the single object case, we present the following proposition, which com-

pletely characterizesM m .

Theorem 4. Any continuous regular mechanism (d; � ) satis�es AN, AS, NBD and SPif

and only if (d; � ) 2 M m .

Proof: See Appendix.

Again as observed in the single object case, all mechanisms inM m which have a

specialK (



4.1 Corollary 2

This theorem uses the axioms of AN, AS, NBD, SP and zero-utility to characterize the

class of VARP mechanism in the single object case. To show independence of axioms,



agentsf 1; 2g. Suppose that for allx � 0,

K 1(x) = x; K 2(x) = max f 0; x � � g; and T1(x) = x + �; T2(x) = max f 0; x � � g

where � > 0. Recall that, as argued in section 5, (d; � ) satis�es NBD, SP, AS and

zero-utility. By Proposition 1, (d; � ) does not satisfy AN as theTi (:) functions

depend on agent identities.

(v) NBD Consider a mechanism (d; � ) belonging to the class described by Fact 1 such

that for all i 2 N and z 2 Rn� 1
+

K i (z) = 0 and Ti (z) =

(
maxf z(1); 20g if z(1) > 10

z(1) if z(1) � 10

Note that by Fact 1, (d; � ) satis�es SP and AS. Also, it can be easily seen that

it satis�es zero-utility. Further, at any valuation pro�le, if valuations of any pair

of agents are changed, their utilities get interchanged. Hence, (d; � ) satis�es AN.

To see that this mechanism violates NBD, consider a three agent setting where

the valuation pro�le ( v1; v2; v3) = (15 ; 8; 7). Note that according our decision rule

d(15; 8; 7) = (1 ; 0; 0). But if agent 2 unilaterally changes her reported valuation to

11, the decision changes tod(15; 11; 7) = (0 ; 0; 0), where agent 2 continues to not



information. Now, �x any � 2 f 0; 1g, any agent i 2 N , and consider any sequence

f vng such that (i) vn � 0, (ii) converges to somev0 � 0, and (iii) for all n, di (vn ) = � .

Now if � = 1 and di (v



that for all i 2 N , z 2 Rn� 1
+ ,

K i (z) = 0 and Ti (z) = z(1) + z(n � 1)



for all i 2 N , z 2 Rn� 1
+ ,

K i (z) = 0 and Ti (z) =

(
10 if z(1) 2 [0



x. Hence, (d1; � 1) is a mechanism, which does not employ a VARP allocation rule, and

satis�es AS, ETE, NBD, SP - but not AN. Thus, our characterization of VARP allocation

rule crucially depends on stronger implications of AN.

6 Conclusion

This paper provides a justi�cation to reserve pricing at auctions using normative and

strategic axioms unrelated to revenue considerations. In particular, it provides a topo-

logical interpretation of a reserve price as thein�mum of the set of non-negative real

numbers satisfying the following property: if all agents bid the same number from this

set, then at least one object is allocated. Finally, it provides complete characterizations

of VARP in single and multiple objects settings. Whether these results continue to hold



Suppose there exists somez 2 Rn� 1
+ such that T1(z) 6= T2(z). W. l. o. g. suppose

that T1(z) > T 2(z). Construct the pro�le v such that v� 1 = z and v1 2 (T2(z); T1(z)).

Then, from Fact 1 it follows that d1(v) = 0 since v1 < T 1(v� 1) = T1(z) by construction.

Now, consider the pro�le v0 = ( v0
1; v0

2; v� 1� 2) where v0
1 = v2 and v0

2 = v1. Note that

v0
� 2 = v� 1 = z. Therefore, d2(v0





Lemma 2. A mechanism (d; � ) satis�es NBD and SP only if 9 � � 0 such that 8 x � 0,

x < � =) �xn 2 B m
0 and x > � =) �xn =2 B m

0

Proof: Fix any mechanism (d; � ) satisfying NBD and SP. Suppose that there exist

0 � x < y such that �xn =2 B m
0 and �yn 2 B m

0 . W. l. o. g. suppose thatdi (�xn ) = 1 for all

i = 1; : : : ; l wherel 2 f 1; : : : ; mg (that is, l objects are allocated at pro�le �xn ). De�ne the

sequence of pro�les (pk) l
k=1 wherep1 = ( y; �xn

� 1) and for all 2 � k � l , pk = ( y; pk� 1
� k ). By

NBD and SP, for all 1� i � l , di (�xn ) = 1 = ) di (p1) = 1 = ) di (p2) = 1 = ) : : : =)

di (pl ) = 1 and so, pl =2 B m
0 . Similarly construct another sequence of pro�les (qk)n

k= l+1

such that ql+1 = ( x; �yn
�f l+1 g) and for all l + 2 � k � n, qk = ( x; qk� 1

� k ). By SP and NBD,

yn 2 B m
0 =) ql+1 2 B m

0 =) ql+2 2 B m
0 =) : : : =) qn 2 B m

0 . By construction,

qn = pl and hence, contradiction. Therefore, for anyx � 0, if �xn =2 B m
0 and then 8 y > x

it must be that �yn =2 B m
0 . Thus, if the set f x � 0 : �xn =2 B m

0 g is non-empty, then the

result follows from the choice of� := inf f x � 0 : �xn =2 B m
0 g . If f x � 0 : �xn =2 B m

0 g = ;

then no objects are allocated at any pro�le where all agents have bid the same value. In

this case the result follows by assigning� := 1 .

The following lemma shows that if� > 0 then no object is allocated at any pro�le

where the highest valuation is strictly less than� .

Lemma 3. A mechanism (d; � ) satis�es AN, NBD and SP only if 8 v 2 [0; � )n , v 2 B m
0 .



Step 2

In this step, we establish thatvi > maxf v� i (1); � g =) di (v) = 1, for all v and i .

To see this, �x any i 2 N and any pro�le v 2 Rn
+ such that vi > maxf v� i (1); � g. Note

that, either vi = v(1) > v (2) > � or vi = v(1) > � � v(2). We analyze each of the two

cases below, and show that in each case:di (v) = 1

Case 1: vi = v(1) > v (2) > �

By Lemma 2, v(2)
n

=2 B 1
0 and so, from Remark 1 and Proposition 1, it follows that

T(v(2)
n� 1

) = v(2). Construct a sequence of pro�lesf pkgn
k=1 such that p1 = v(2)

n
,

p2 = ( vi ; p1
� i ) and 8 3 � k � n, pk = ( vtk ; pk� 1

� tk
) where tk 2 f j 2 N jvj = v(k)g (by the

tie-breaking rule, this set is a singleton set). Further,T(p1
� i ) = T(v(2)

n� 1
) = v(2) and so

under the suppositionvi = v(1) > v (2), di (p2) = 1. Since m = 1 it follows that dj (p2) =

0; 8 j 6= i . Moreover, by SP and NBD, for allj 2 N , dj (p2) = dj (p3) = : : : = dj (pn ).

Since, by construction,pn = v, we get that di (v) = 1 and dj (v) = 0 for all j 6= i .

Case 2: vi = v(1) > � � v(2)

Consider the sequence of pro�lesf pkgn
k=0 wherep0 = � + � n and � 2 (0; vi � � ). For all

1 � k � n, pk = ( vtk ; pk� 1
� tk

) where tk 2 f j 2 N jvj = v(k)g (as mentioned before, this

set is a singleton set by the tie-breaking rule). Together with Remark 1, Lemma 2 and

Proposition 1, we get that p0 =2 B 1
0 which implies that T(p0

� j ) = � + � for all j 2 N .

Further, by construction, p1
i = vi and p0

� i = p1
� i . Therefore,p1

i > T (p1
� i ) = � + � and so,

from Fact 1 it follows that di (p1) = 1. Since m = 1, we can then claim that dj (p1) = 0

for all j 6= i . Hence, by SP and NBD, for allj 2 N , dj (p1) = dj (p2) = : : : = dj (pn ). By

construction, pn = v which implies that di (v) = 1.

7.3 Proof of Theorem 2

The su�ciency is easy to check. The necessity follows from Proposition 2 (in subsection

7.1 of Appendix) and Theorem 1.

7.4 Proof of Theorem 3

Fix any continuous regular mechanism (d; � ) that satis�es AN, AS, NBD, SP. Given

Proposition 1 and Fact 1; the result would follow if we show that the threshold function

T(:) associated with (d; � ) is of the following form:

(a) T(v� i ) = max f v� i (m); � g; 8 i 2 N; 8 v 2 RN
+ ;

where, as in proof of Theorem 1,� := inf f x � 0 : �xn =2 B m
0 g and, as de�ned earlier,

B m
0 = f v 2 RN

+ : W m (v) = ;g . We establish (a) in the following four steps:
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Step 3

In this step we show that for anyz 2 Rn� 1 with z(1) = � > z (n � 1), T(z) = � .27 Fix any

suchz. Since Proposition 2 has establishedT(:) as a symmetric function, we can assume

w.l.o.g. that zk = z(k) for all k = 1; : : : ; n � 1. Fix the number h 2 f 1; : : : ; n � 1g such

that zh � � > z h+1 . For any x 2 [0; � ], de�ne

~zx := ( � � x; � � x; : : : ; � � x| {z }
h coordinates

; zh+1 ; zh+2 ; : : : ; zn ):

Now, consider the �rst possibility that T(z) < � . By continuity of T(:) function,

there exists an� > 0 such that for all x 2 (0; � T



by construction, qn� 2
m = qn� 2

m+1 = � and qn� 2
�f mg = qn� 2

�f m+1 g = z. Thus, arguing as

in Remark 1, the fact that dm (qn� 2) = 1 ; dm+1 (qn� 2) = 0 can be used to infer that

� � T(qn� 2
�f mg) = T(qn� 2

�f m+1 g) � � implying that T(z) = � = zm .

Case 2: � < �

Fix any x � 0, de�ne the pro�le px such that px
1 = x and px

� 1 = z and construct the

pro�le p such that pk = px (k) for all k 2 f 1; 2; : : : ; ng. Therefore, by construction,

p1 � p2 � : : : � pn . We consider two subcases:x � � and x < � . In the following

paragraphs, we show thatd1(px ) = 1 in the former case whiled1(px ) = 0 in the latter

case. By Fact 1, this inference to imply thatT(px
� 1) = T(z) = � .

Subcase 1.x � �

De�ne the agent g := f j 2 N : pj � � and pj +1 < � g. Since� < � and x > � , agent g

is well de�ned and g 2 f 1; : : : ; mg. Therefore,pg is the smallest coordinate ofp greater

than or equal to � while pg+1



7.6 Relation between non bossiness in decision (NBD) and Sat-

terthwaite and Sonnenschein [26] version of non-bossiness

(SSNB).

Lemma 4. If a strategyproof mechanism(d; t) violates NBD then it violates SSNB.

Proof: Fix any mechanism (d; t) that violates NBD. Therefore, there existsi 2 N ,

v� i 2 RN nf i g, and x0 6= y0 � 0 such that

di (x0; v� i ) = di (y0; v� i ) and 9 j 2 N n f ig such that dj (x0; v� i ) 6= dj (y0; v� i ):

Now it is well known that in a discrete object allocation problem with unit demand,

a strategyproofness mechanism exhibits the property thatdi (a; v� i ) = di (b; v� i ) =)

t i (a; v� i ) = t i (b; v� i ) for all a; b�
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